
Manual	template	latex

http://eelruxe.com/wb3?utm_term=manual%20template%20latex

The	guidelines	on	this	page	will	help	you	to	prepare	and	submit	your	LaTeX	files.	Please	note	that	there	are	separate	instructions	available	for	CRC	journal	articles	and	IFAC	meeting	papers.Preparing	your	manuscriptThe	Elsevier	article	classThe	Elsevier	article	class	helps	you	to	format	the	frontmatter	of	your	manuscript	properly.	It	is	part	of	the
elsarticle	package.	This	package	is	contained	in	most	TeX	distributions	and	is	available	on	CTAN.	The	elsarticle	documentation	and	some	common	templates	and	bibliographic	styles	are	part	of	this	package	as	well.	You	can	download	a	set	of	files	containing	a	template	LaTeX	manuscript,	using	the	elsarticle	class,	plus	associated	BibTeX	style	files	here.
Although	elsarticle.cls	supports	most	journal	styles,	it	is	not	possible	to	match	the	journal's	layout	exactly.For	more	complex	articles	two	additional	class	files	and	templates	are	available,	single-column	(cas-sc.cls)	and	double-column	(cas-dc.cls).	These	can	be	downloaded	from	CTAN	(els-cas-template.zip).	These	class	files	are	documented
here.Elsevier	reference	stylesSome	journals	require	a	specific	reference	style.	The	relevant	bibliographic	styles	for	LaTeX	are	packed	with	the		sample	manuscript	are	available	in	the	“doc”	folder.RecommendationsTo	ensure	a	fast	processing	of	your	document,	we	recommend	the	following:Use	elsarticle.cls	in	combination	with	BibTeX.Follow	the
documentation	of	the	class	you	are	using.	(The	documentation	of	elsarticle.cls	is	found	here.)Use	the	standard	layout	or	keep	layout	changes	to	a	minimum.	(Custom	layout	will	be	removed.)Keep	it	simple.	(Advanced	constructions	with	for	example	TikZ	or	pstricks	will	be	rendered	as	images.)Check	your	journal's	Guide	for	Authors	for	any	journal-
specific	formatting	requirements.Most	journals	accept	a	PDF	of	your	manuscript	at	initial	submission.When	you	are	asked	to	submit	your	manuscript	source	files,	do	the	following:Build	a	PDF	of	your	manuscript	source	files	on	your	computer	and	attach	it	with	item	type	'Manuscript'.Bundle	all	manuscript	source	files	in	a	single	archive	and	attach	it
with	item	type	'LaTeX	source	files'.	Source	files	include	LaTeX	files,	BibTeX	files,	figures,	tables,	all	LaTeX	classes	and	packages	that	are	not	included	in	TeX	Live	and	any	other	material	that	belongs	to	your	manuscript.Please	note	the	following	technical	requirements	for	the	submission	of	source	files:The	source	files	should	compile	without	errors
with	pdflatex	or	latex	.The	PDF	should	be	generated	from	the	source	files	you	submit.All	classes	and	packages	that	are	not	contained	in	TeX	Live	should	be	submitted	along	with	the	source	files.	You	can	check	in	the	CTAN	database	whether	your	class	or	package	is	contained	in	TeX	Live.Figures	should	be	submitted	in	one	of	the	following	formats:
EPS,	JPG,	PDF	or	PNG.	For	quality	standards,	please	see	the	artwork	&	media	instructions.Frequently	Asked	QuestionsWhy	is	the	item	type	'LaTeX	source	files'	not	available?Journals	with	very	few	LaTeX	submissions	may	not	have	this	item	type.	In	this	case,	submit	your	manuscript	in	PDF	format	only	and	supply	the	source	files	when	requested.For
more	information	and	support,	see	the	Elsevier	Support	Center.For	a	beginner's	guide	to	writing	a	manuscript	in	LaTeX	see	the	interactive	course	on	the	Elsevier	Publishing	Campus.Preparing	CRC	journal	articlesCamera-ready	copy	(CRC)	journals	are	those	that	reproduce	the	author's	manuscript	exactly,	with	no	intervention	by	the	typesetter.	Such
journals	are	the	exception	rather	than	the	rule;	if	a	journal	is	CRC,	this	fact	is	clearly	indicated	in	the	instructions	to	authors.	The	Procedia	series	of	journals,	for	example,	are	genuine	CRC.	Please	read	carefully	the	journal's	instructions	to	authors.For	LaTeX	authors	of	camera-ready	articles,	we	provide	the	ecrc.sty	package.	This	is	a	small	package
designed	to	work	with	the	elsarticle	document	class.	All	the	features	of	elsarticle	are	available,	along	with	a	few	extra	commands	specific	to	CRC	reproduction.	Documentation	for	the	use	of	ecrc.sty	is	included	in	the	manuscript	template	file	available	below.The	archive	file	elsarticle-ecrc.zip	contains	all	the	necessary	files	to	run	this	package.	To	install
ecrc.sty,	unzip	the	elsarticle-ecrc.zip	file.	Usually	the	file	can	be	unzipped	directly	in	the	local	tree	of	your	TeX	distribution	(for	TeX	Live,	this	would	be	in	the	texmf-local	directory).	The	archive	contains	the	following	files:Once	the	package	has	been	installed,	edit	the	manuscript	file	ecrc-template.tex	according	to	the	instructions	in	that	file,	and	save
with	a	new	name.	The	manuscript	file	should	be	compiled	with	pdflatex	(and	bibtex	if	desired).Please	only	use	these	packages	after	confirmation	from	the	journal's	editors.	pandoc	[options]	[input-file]…	Pandoc	is	a	Haskell	library	for	converting	from	one	markup	format	to	another,	and	a	command-line	tool	that	uses	this	library.	Pandoc	can	convert
between	numerous	markup	and	word	processing	formats,	including,	but	not	limited	to,	various	flavors	of	Markdown,	HTML,	LaTeX	and	Word	docx.	For	the	full	lists	of	input	and	output	formats,	see	the	--from	and	--to	options	below.	Pandoc	can	also	produce	PDF	output:	see	creating	a	PDF,	below.	Pandoc’s	enhanced	version	of	Markdown	includes
syntax	for	tables,	definition	lists,	metadata	blocks,	footnotes,	citations,	math,	and	much	more.	See	below	under	Pandoc’s	Markdown.	Pandoc	has	a	modular	design:	it	consists	of	a	set	of	readers,	which	parse	text	in	a	given	format	and	produce	a	native	representation	of	the	document	(an	abstract	syntax	tree	or	AST),	and	a	set	of	writers,	which	convert
this	native	representation	into	a	target	format.	Thus,	adding	an	input	or	output	format	requires	only	adding	a	reader	or	writer.	Users	can	also	run	custom	pandoc	filters	to	modify	the	intermediate	AST.	Because	pandoc’s	intermediate	representation	of	a	document	is	less	expressive	than	many	of	the	formats	it	converts	between,	one	should	not	expect
perfect	conversions	between	every	format	and	every	other.	Pandoc	attempts	to	preserve	the	structural	elements	of	a	document,	but	not	formatting	details	such	as	margin	size.	And	some	document	elements,	such	as	complex	tables,	may	not	fit	into	pandoc’s	simple	document	model.	While	conversions	from	pandoc’s	Markdown	to	all	formats	aspire	to	be
perfect,	conversions	from	formats	more	expressive	than	pandoc’s	Markdown	can	be	expected	to	be	lossy.	If	no	input-files	are	specified,	input	is	read	from	stdin.	Output	goes	to	stdout	by	default.	For	output	to	a	file,	use	the	-o	option:	pandoc	-o	output.html	input.txt	By	default,	pandoc	produces	a	document	fragment.	To	produce	a	standalone	document
(e.g.	a	valid	HTML	file	including	and),	use	the	-s	or	--standalone	flag:	pandoc	-s	-o	output.html	input.txt	For	more	information	on	how	standalone	documents	are	produced,	see	Templates	below.	If	multiple	input	files	are	given,	pandoc	will	concatenate	them	all	(with	blank	lines	between	them)	before	parsing.	(Use	--file-scope	to	parse	files	individually.)
The	format	of	the	input	and	output	can	be	specified	explicitly	using	command-line	options.	The	input	format	can	be	specified	using	the	-f/--from	option,	the	output	format	using	the	-t/--to	option.	Thus,	to	convert	hello.txt	from	Markdown	to	LaTeX,	you	could	type:	pandoc	-f	markdown	-t	latex	hello.txt	To	convert	hello.html	from	HTML	to	Markdown:
pandoc	-f	html	-t	markdown	hello.html	Supported	input	and	output	formats	are	listed	below	under	Options	(see	-f	for	input	formats	and	-t	for	output	formats).	You	can	also	use	pandoc	--list-input-formats	and	pandoc	--list-output-formats	to	print	lists	of	supported	formats.	If	the	input	or	output	format	is	not	specified	explicitly,	pandoc	will	attempt	to
guess	it	from	the	extensions	of	the	filenames.	Thus,	for	example,	pandoc	-o	hello.tex	hello.txt	will	convert	hello.txt	from	Markdown	to	LaTeX.	If	no	output	file	is	specified	(so	that	output	goes	to	stdout),	or	if	the	output	file’s	extension	is	unknown,	the	output	format	will	default	to	HTML.	If	no	input	file	is	specified	(so	that	input	comes	from	stdin),	or	if
the	input	files’	extensions	are	unknown,	the	input	format	will	be	assumed	to	be	Markdown.	Pandoc	uses	the	UTF-8	character	encoding	for	both	input	and	output.	If	your	local	character	encoding	is	not	UTF-8,	you	should	pipe	input	and	output	through	iconv:	iconv	-t	utf-8	input.txt	|	pandoc	|	iconv	-f	utf-8	Note	that	in	some	output	formats	(such	as	HTML,
LaTeX,	ConTeXt,	RTF,	OPML,	DocBook,	and	Texinfo),	information	about	the	character	encoding	is	included	in	the	document	header,	which	will	only	be	included	if	you	use	the	-s/--standalone	option.	To	produce	a	PDF,	specify	an	output	file	with	a	.pdf	extension:	pandoc	test.txt	-o	test.pdf	By	default,	pandoc	will	use	LaTeX	to	create	the	PDF,	which
requires	that	a	LaTeX	engine	be	installed	(see	--pdf-engine	below).	Alternatively,	pandoc	can	use	ConTeXt,	roff	ms,	or	HTML	as	an	intermediate	format.	To	do	this,	specify	an	output	file	with	a	.pdf	extension,	as	before,	but	add	the	--pdf-engine	option	or	-t	context,	-t	html,	or	-t	ms	to	the	command	line.	The	tool	used	to	generate	the	PDF	from	the
intermediate	format	may	be	specified	using	--pdf-engine.	You	can	control	the	PDF	style	using	variables,	depending	on	the	intermediate	format	used:	see	variables	for	LaTeX,	variables	for	ConTeXt,	variables	for	wkhtmltopdf,	variables	for	ms.	When	HTML	is	used	as	an	intermediate	format,	the	output	can	be	styled	using	--css.	To	debug	the	PDF
creation,	it	can	be	useful	to	look	at	the	intermediate	representation:	instead	of	-o	test.pdf,	use	for	example	-s	-o	test.tex	to	output	the	generated	LaTeX.	You	can	then	test	it	with	pdflatex	test.tex.	When	using	LaTeX,	the	following	packages	need	to	be	available	(they	are	included	with	all	recent	versions	of	TeX	Live):	amsfonts,	amsmath,	lm,	unicode-
math,	iftex,	listings	(if	the	--listings	option	is	used),	fancyvrb,	longtable,	booktabs,	graphicx	(if	the	document	contains	images),	hyperref,	xcolor,	ulem,	geometry	(with	the	geometry	variable	set),	setspace	(with	linestretch),	and	babel	(with	lang).	If	CJKmainfont	is	set,	xeCJK	is	needed.	The	use	of	xelatex	or	lualatex	as	the	PDF	engine	requires	fontspec.
lualatex	uses	selnolig.	xelatex	uses	bidi	(with	the	dir	variable	set).	If	the	mathspec	variable	is	set,	xelatex	will	use	mathspec	instead	of	unicode-math.	The	upquote	and	microtype	packages	are	used	if	available,	and	csquotes	will	be	used	for	typography	if	the	csquotes	variable	or	metadata	field	is	set	to	a	true	value.	The	natbib,	biblatex,	bibtex,	and	biber
packages	can	optionally	be	used	for	citation	rendering.	The	following	packages	will	be	used	to	improve	output	quality	if	present,	but	pandoc	does	not	require	them	to	be	present:	upquote	(for	straight	quotes	in	verbatim	environments),	microtype	(for	better	spacing	adjustments),	parskip	(for	better	inter-paragraph	spaces),	xurl	(for	better	line	breaks	in
URLs),	bookmark	(for	better	PDF	bookmarks),	and	footnotehyper	or	footnote	(to	allow	footnotes	in	tables).	Instead	of	an	input	file,	an	absolute	URI	may	be	given.	In	this	case	pandoc	will	fetch	the	content	using	HTTP:	pandoc	-f	html	-t	markdown	It	is	possible	to	supply	a	custom	User-Agent	string	or	other	header	when	requesting	a	document	from	a
URL:	pandoc	-f	html	-t	markdown	--request-header	User-Agent:"Mozilla/5.0"	\	-f	FORMAT,	-r	FORMAT,	--from=FORMAT,	--read=FORMAT	Specify	input	format.	FORMAT	can	be:	Extensions	can	be	individually	enabled	or	disabled	by	appending	+EXTENSION	or	-EXTENSION	to	the	format	name.	See	Extensions	below,	for	a	list	of	extensions	and	their
names.	See	--list-input-formats	and	--list-extensions,	below.	-t	FORMAT,	-w	FORMAT,	--to=FORMAT,	--write=FORMAT	Specify	output	format.	FORMAT	can	be:	Note	that	odt,	docx,	epub,	and	pdf	output	will	not	be	directed	to	stdout	unless	forced	with	-o	-.	Extensions	can	be	individually	enabled	or	disabled	by	appending	+EXTENSION	or	-EXTENSION
to	the	format	name.	See	Extensions	below,	for	a	list	of	extensions	and	their	names.	See	--list-output-formats	and	--list-extensions,	below.	-o	FILE,	--output=FILE	Write	output	to	FILE	instead	of	stdout.	If	FILE	is	-,	output	will	go	to	stdout,	even	if	a	non-textual	format	(docx,	odt,	epub2,	epub3)	is	specified.	--data-dir=DIRECTORY	Specify	the	user	data
directory	to	search	for	pandoc	data	files.	If	this	option	is	not	specified,	the	default	user	data	directory	will	be	used.	On	*nix	and	macOS	systems	this	will	be	the	pandoc	subdirectory	of	the	XDG	data	directory	(by	default,	$HOME/.local/share,	overridable	by	setting	the	XDG_DATA_HOME	environment	variable).	If	that	directory	does	not	exist	and
$HOME/.pandoc	exists,	it	will	be	used	(for	backwards	compatibility).	On	Windows	the	default	user	data	directory	is	C:\Users\USERNAME\AppData\Roaming\pandoc.	You	can	find	the	default	user	data	directory	on	your	system	by	looking	at	the	output	of	pandoc	--version.	Data	files	placed	in	this	directory	(for	example,	reference.odt,	reference.docx,
epub.css,	templates)	will	override	pandoc’s	normal	defaults.	-d	FILE,	--defaults=FILE	Specify	a	set	of	default	option	settings.	FILE	is	a	YAML	file	whose	fields	correspond	to	command-line	option	settings.	All	options	for	document	conversion,	including	input	and	output	files,	can	be	set	using	a	defaults	file.	The	file	will	be	searched	for	first	in	the
working	directory,	and	then	in	the	defaults	subdirectory	of	the	user	data	directory	(see	--data-dir).	The	.yaml	extension	may	be	omitted.	See	the	section	Defaults	files	for	more	information	on	the	file	format.	Settings	from	the	defaults	file	may	be	overridden	or	extended	by	subsequent	options	on	the	command	line.	--bash-completion	Generate	a	bash
completion	script.	To	enable	bash	completion	with	pandoc,	add	this	to	your	.bashrc:	eval	"$(pandoc	--bash-completion)"	--verbose	Give	verbose	debugging	output.	--quiet	Suppress	warning	messages.	--fail-if-warnings	Exit	with	error	status	if	there	are	any	warnings.	--log=FILE	Write	log	messages	in	machine-readable	JSON	format	to	FILE.	All	messages
above	DEBUG	level	will	be	written,	regardless	of	verbosity	settings	(--verbose,	--quiet).	--list-input-formats	List	supported	input	formats,	one	per	line.	--list-output-formats	List	supported	output	formats,	one	per	line.	--list-extensions[=FORMAT]	List	supported	extensions	for	FORMAT,	one	per	line,	preceded	by	a	+	or	-	indicating	whether	it	is	enabled	by
default	in	FORMAT.	If	FORMAT	is	not	specified,	defaults	for	pandoc’s	Markdown	are	given.	--list-highlight-languages	List	supported	languages	for	syntax	highlighting,	one	per	line.	--list-highlight-styles	List	supported	styles	for	syntax	highlighting,	one	per	line.	See	--highlight-style.	-v,	--version	Print	version.	-h,	--help	Show	usage	message.	--shift-
heading-level-by=NUMBER	Shift	heading	levels	by	a	positive	or	negative	integer.	For	example,	with	--shift-heading-level-by=-1,	level	2	headings	become	level	1	headings,	and	level	3	headings	become	level	2	headings.	Headings	cannot	have	a	level	less	than	1,	so	a	heading	that	would	be	shifted	below	level	1	becomes	a	regular	paragraph.	Exception:
with	a	shift	of	-N,	a	level-N	heading	at	the	beginning	of	the	document	replaces	the	metadata	title.	--shift-heading-level-by=-1	is	a	good	choice	when	converting	HTML	or	Markdown	documents	that	use	an	initial	level-1	heading	for	the	document	title	and	level-2+	headings	for	sections.	--shift-heading-level-by=1	may	be	a	good	choice	for	converting
Markdown	documents	that	use	level-1	headings	for	sections	to	HTML,	since	pandoc	uses	a	level-1	heading	to	render	the	document	title.	Deprecated.	Use	--shift-heading-level-by=X	instead,	where	X	=	NUMBER	-	1.	Specify	the	base	level	for	headings	(defaults	to	1).	--strip-empty-paragraphs	Deprecated.	Use	the	+empty_paragraphs	extension	instead.
Ignore	paragraphs	with	no	content.	This	option	is	useful	for	converting	word	processing	documents	where	users	have	used	empty	paragraphs	to	create	inter-paragraph	space.	--indented-code-classes=CLASSES	Specify	classes	to	use	for	indented	code	blocks–for	example,	perl,numberLines	or	haskell.	Multiple	classes	may	be	separated	by	spaces	or
commas.	--default-image-extension=EXTENSION	Specify	a	default	extension	to	use	when	image	paths/URLs	have	no	extension.	This	allows	you	to	use	the	same	source	for	formats	that	require	different	kinds	of	images.	Currently	this	option	only	affects	the	Markdown	and	LaTeX	readers.	--file-scope	Parse	each	file	individually	before	combining	for
multifile	documents.	This	will	allow	footnotes	in	different	files	with	the	same	identifiers	to	work	as	expected.	If	this	option	is	set,	footnotes	and	links	will	not	work	across	files.	Reading	binary	files	(docx,	odt,	epub)	implies	--file-scope.	-F	PROGRAM,	--filter=PROGRAM	Specify	an	executable	to	be	used	as	a	filter	transforming	the	pandoc	AST	after	the
input	is	parsed	and	before	the	output	is	written.	The	executable	should	read	JSON	from	stdin	and	write	JSON	to	stdout.	The	JSON	must	be	formatted	like	pandoc’s	own	JSON	input	and	output.	The	name	of	the	output	format	will	be	passed	to	the	filter	as	the	first	argument.	Hence,	pandoc	--filter	./caps.py	-t	latex	is	equivalent	to	pandoc	-t	json	|	./caps.py
latex	|	pandoc	-f	json	-t	latex	The	latter	form	may	be	useful	for	debugging	filters.	Filters	may	be	written	in	any	language.	Text.Pandoc.JSON	exports	toJSONFilter	to	facilitate	writing	filters	in	Haskell.	Those	who	would	prefer	to	write	filters	in	python	can	use	the	module	pandocfilters,	installable	from	PyPI.	There	are	also	pandoc	filter	libraries	in	PHP,
perl,	and	JavaScript/node.js.	In	order	of	preference,	pandoc	will	look	for	filters	in	a	specified	full	or	relative	path	(executable	or	non-executable),	$DATADIR/filters	(executable	or	non-executable)	where	$DATADIR	is	the	user	data	directory	(see	--data-dir,	above),	$PATH	(executable	only).	Filters,	Lua-filters,	and	citeproc	processing	are	applied	in	the
order	specified	on	the	command	line.	-L	SCRIPT,	--lua-filter=SCRIPT	Transform	the	document	in	a	similar	fashion	as	JSON	filters	(see	--filter),	but	use	pandoc’s	built-in	Lua	filtering	system.	The	given	Lua	script	is	expected	to	return	a	list	of	Lua	filters	which	will	be	applied	in	order.	Each	Lua	filter	must	contain	element-transforming	functions	indexed
by	the	name	of	the	AST	element	on	which	the	filter	function	should	be	applied.	The	pandoc	Lua	module	provides	helper	functions	for	element	creation.	It	is	always	loaded	into	the	script’s	Lua	environment.	See	the	Lua	filters	documentation	for	further	details.	In	order	of	preference,	pandoc	will	look	for	Lua	filters	in	a	specified	full	or	relative	path,
$DATADIR/filters	where	$DATADIR	is	the	user	data	directory	(see	--data-dir,	above).	Filters,	Lua	filters,	and	citeproc	processing	are	applied	in	the	order	specified	on	the	command	line.	Set	the	metadata	field	KEY	to	the	value	VAL.	A	value	specified	on	the	command	line	overrides	a	value	specified	in	the	document	using	YAML	metadata	blocks.	Values
will	be	parsed	as	YAML	boolean	or	string	values.	If	no	value	is	specified,	the	value	will	be	treated	as	Boolean	true.	Like	--variable,	--metadata	causes	template	variables	to	be	set.	But	unlike	--variable,	--metadata	affects	the	metadata	of	the	underlying	document	(which	is	accessible	from	filters	and	may	be	printed	in	some	output	formats)	and	metadata
values	will	be	escaped	when	inserted	into	the	template.	Read	metadata	from	the	supplied	YAML	(or	JSON)	file.	This	option	can	be	used	with	every	input	format,	but	string	scalars	in	the	YAML	file	will	always	be	parsed	as	Markdown.	(If	the	input	format	is	Markdown	or	a	Markdown	variant,	then	the	same	variant	will	be	used	to	parse	the	metadata	file;
if	it	is	a	non-Markdown	format,	pandoc’s	default	Markdown	extensions	will	be	used.)	This	option	can	be	used	repeatedly	to	include	multiple	metadata	files;	values	in	files	specified	later	on	the	command	line	will	be	preferred	over	those	specified	in	earlier	files.	Metadata	values	specified	inside	the	document,	or	by	using	-M,	overwrite	values	specified
with	this	option.	The	file	will	be	searched	for	first	in	the	working	directory,	and	then	in	the	metadata	subdirectory	of	the	user	data	directory	(see	--data-dir).	-p,	--preserve-tabs	Preserve	tabs	instead	of	converting	them	to	spaces.	(By	default,	pandoc	converts	tabs	to	spaces	before	parsing	its	input.)	Note	that	this	will	only	affect	tabs	in	literal	code	spans
and	code	blocks.	Tabs	in	regular	text	are	always	treated	as	spaces.	--tab-stop=NUMBER	Specify	the	number	of	spaces	per	tab	(default	is	4).	--track-changes=accept|reject|all	Specifies	what	to	do	with	insertions,	deletions,	and	comments	produced	by	the	MS	Word	“Track	Changes”	feature.	accept	(the	default)	processes	all	the	insertions	and	deletions.
reject	ignores	them.	Both	accept	and	reject	ignore	comments.	all	includes	all	insertions,	deletions,	and	comments,	wrapped	in	spans	with	insertion,	deletion,	comment-start,	and	comment-end	classes,	respectively.	The	author	and	time	of	change	is	included.	all	is	useful	for	scripting:	only	accepting	changes	from	a	certain	reviewer,	say,	or	before	a
certain	date.	If	a	paragraph	is	inserted	or	deleted,	track-changes=all	produces	a	span	with	the	class	paragraph-insertion/paragraph-deletion	before	the	affected	paragraph	break.	This	option	only	affects	the	docx	reader.	Extract	images	and	other	media	contained	in	or	linked	from	the	source	document	to	the	path	DIR,	creating	it	if	necessary,	and
adjust	the	images	references	in	the	document	so	they	point	to	the	extracted	files.	Media	are	downloaded,	read	from	the	file	system,	or	extracted	from	a	binary	container	(e.g.	docx),	as	needed.	The	original	file	paths	are	used	if	they	are	relative	paths	not	containing	...	Otherwise	filenames	are	constructed	from	the	SHA1	hash	of	the	contents.	--
abbreviations=FILE	Specifies	a	custom	abbreviations	file,	with	abbreviations	one	to	a	line.	If	this	option	is	not	specified,	pandoc	will	read	the	data	file	abbreviations	from	the	user	data	directory	or	fall	back	on	a	system	default.	To	see	the	system	default,	use	pandoc	--print-default-data-file=abbreviations.	The	only	use	pandoc	makes	of	this	list	is	in	the
Markdown	reader.	Strings	found	in	this	list	will	be	followed	by	a	nonbreaking	space,	and	the	period	will	not	produce	sentence-ending	space	in	formats	like	LaTeX.	The	strings	may	not	contain	spaces.	--trace	Print	diagnostic	output	tracing	parser	progress	to	stderr.	This	option	is	intended	for	use	by	developers	in	diagnosing	performance	issues.	-s,	--
standalone	Produce	output	with	an	appropriate	header	and	footer	(e.g.	a	standalone	HTML,	LaTeX,	TEI,	or	RTF	file,	not	a	fragment).	This	option	is	set	automatically	for	pdf,	epub,	epub3,	fb2,	docx,	and	odt	output.	For	native	output,	this	option	causes	metadata	to	be	included;	otherwise,	metadata	is	suppressed.	--template=FILE|URL	Use	the	specified
file	as	a	custom	template	for	the	generated	document.	Implies	--standalone.	See	Templates,	below,	for	a	description	of	template	syntax.	If	no	extension	is	specified,	an	extension	corresponding	to	the	writer	will	be	added,	so	that	--template=special	looks	for	special.html	for	HTML	output.	If	the	template	is	not	found,	pandoc	will	search	for	it	in	the
templates	subdirectory	of	the	user	data	directory	(see	--data-dir).	If	this	option	is	not	used,	a	default	template	appropriate	for	the	output	format	will	be	used	(see	-D/--print-default-template).	-V	KEY[=VAL],	--variable=KEY[:VAL]	Set	the	template	variable	KEY	to	the	value	VAL	when	rendering	the	document	in	standalone	mode.	If	no	VAL	is	specified,	the
key	will	be	given	the	value	true.	--sandbox	Run	pandoc	in	a	sandbox,	limiting	IO	operations	in	readers	and	writers	to	reading	the	files	specified	on	the	command	line.	Note	that	this	option	does	not	limit	IO	operations	by	filters	or	in	the	production	of	PDF	documents.	But	it	does	offer	security	against,	for	example,	disclosure	of	files	through	the	use	of
include	directives.	Anyone	using	pandoc	on	untrusted	user	input	should	use	this	option.	Note:	some	readers	and	writers	(e.g.,	docx)	need	access	to	data	files.	If	these	are	stored	on	the	file	system,	then	pandoc	will	not	be	able	to	find	them	when	run	in	--sandbox	mode	and	will	raise	an	error.	For	these	applications,	we	recommend	using	a	pandoc	binary
compiled	with	the	embed_data_files	option,	which	causes	the	data	files	to	be	baked	into	the	binary	instead	of	being	stored	on	the	file	system.	-D	FORMAT,	--print-default-template=FORMAT	Print	the	system	default	template	for	an	output	FORMAT.	(See	-t	for	a	list	of	possible	FORMATs.)	Templates	in	the	user	data	directory	are	ignored.	This	option
may	be	used	with	-o/--output	to	redirect	output	to	a	file,	but	-o/--output	must	come	before	--print-default-template	on	the	command	line.	Note	that	some	of	the	default	templates	use	partials,	for	example	styles.html.	To	print	the	partials,	use	--print-default-data-file:	for	example,	--print-default-data-file=templates/styles.html.	--print-default-data-file=FILE
Print	a	system	default	data	file.	Files	in	the	user	data	directory	are	ignored.	This	option	may	be	used	with	-o/--output	to	redirect	output	to	a	file,	but	-o/--output	must	come	before	--print-default-data-file	on	the	command	line.	--eol=crlf|lf|native	Manually	specify	line	endings:	crlf	(Windows),	lf	(macOS/Linux/UNIX),	or	native	(line	endings	appropriate	to
the	OS	on	which	pandoc	is	being	run).	The	default	is	native.	--dpi=NUMBER	Specify	the	default	dpi	(dots	per	inch)	value	for	conversion	from	pixels	to	inch/centimeters	and	vice	versa.	(Technically,	the	correct	term	would	be	ppi:	pixels	per	inch.)	The	default	is	96dpi.	When	images	contain	information	about	dpi	internally,	the	encoded	value	is	used
instead	of	the	default	specified	by	this	option.	--wrap=auto|none|preserve	Determine	how	text	is	wrapped	in	the	output	(the	source	code,	not	the	rendered	version).	With	auto	(the	default),	pandoc	will	attempt	to	wrap	lines	to	the	column	width	specified	by	--columns	(default	72).	With	none,	pandoc	will	not	wrap	lines	at	all.	With	preserve,	pandoc	will
attempt	to	preserve	the	wrapping	from	the	source	document	(that	is,	where	there	are	nonsemantic	newlines	in	the	source,	there	will	be	nonsemantic	newlines	in	the	output	as	well).	In	ipynb	output,	this	option	affects	wrapping	of	the	contents	of	markdown	cells.	--columns=NUMBER	Specify	length	of	lines	in	characters.	This	affects	text	wrapping	in
the	generated	source	code	(see	--wrap).	It	also	affects	calculation	of	column	widths	for	plain	text	tables	(see	Tables	below).	--toc,	--table-of-contents	Include	an	automatically	generated	table	of	contents	(or,	in	the	case	of	latex,	context,	docx,	odt,	opendocument,	rst,	or	ms,	an	instruction	to	create	one)	in	the	output	document.	This	option	has	no	effect
unless	-s/--standalone	is	used,	and	it	has	no	effect	on	man,	docbook4,	docbook5,	or	jats	output.	Note	that	if	you	are	producing	a	PDF	via	ms,	the	table	of	contents	will	appear	at	the	beginning	of	the	document,	before	the	title.	If	you	would	prefer	it	to	be	at	the	end	of	the	document,	use	the	option	--pdf-engine-opt=--no-toc-relocation.	--toc-
depth=NUMBER	Specify	the	number	of	section	levels	to	include	in	the	table	of	contents.	The	default	is	3	(which	means	that	level-1,	2,	and	3	headings	will	be	listed	in	the	contents).	Strip	out	HTML	comments	in	the	Markdown	or	Textile	source,	rather	than	passing	them	on	to	Markdown,	Textile	or	HTML	output	as	raw	HTML.	This	does	not	apply	to
HTML	comments	inside	raw	HTML	blocks	when	the	markdown_in_html_blocks	extension	is	not	set.	--no-highlight	Disables	syntax	highlighting	for	code	blocks	and	inlines,	even	when	a	language	attribute	is	given.	--highlight-style=STYLE|FILE	Specifies	the	coloring	style	to	be	used	in	highlighted	source	code.	Options	are	pygments	(the	default),	kate,
monochrome,	breezeDark,	espresso,	zenburn,	haddock,	and	tango.	For	more	information	on	syntax	highlighting	in	pandoc,	see	Syntax	highlighting,	below.	See	also	--list-highlight-styles.	Instead	of	a	STYLE	name,	a	JSON	file	with	extension	.theme	may	be	supplied.	This	will	be	parsed	as	a	KDE	syntax	highlighting	theme	and	(if	valid)	used	as	the
highlighting	style.	To	generate	the	JSON	version	of	an	existing	style,	use	--print-highlight-style.	--print-highlight-style=STYLE|FILE	Prints	a	JSON	version	of	a	highlighting	style,	which	can	be	modified,	saved	with	a	.theme	extension,	and	used	with	--highlight-style.	This	option	may	be	used	with	-o/--output	to	redirect	output	to	a	file,	but	-o/--output	must
come	before	--print-highlight-style	on	the	command	line.	--syntax-definition=FILE	Instructs	pandoc	to	load	a	KDE	XML	syntax	definition	file,	which	will	be	used	for	syntax	highlighting	of	appropriately	marked	code	blocks.	This	can	be	used	to	add	support	for	new	languages	or	to	use	altered	syntax	definitions	for	existing	languages.	This	option	may	be
repeated	to	add	multiple	syntax	definitions.	Include	contents	of	FILE,	verbatim,	at	the	end	of	the	header.	This	can	be	used,	for	example,	to	include	special	CSS	or	JavaScript	in	HTML	documents.	This	option	can	be	used	repeatedly	to	include	multiple	files	in	the	header.	They	will	be	included	in	the	order	specified.	Implies	--standalone.	-B	FILE,	--
include-before-body=FILE|URL	Include	contents	of	FILE,	verbatim,	at	the	beginning	of	the	document	body	(e.g.	after	the	tag	in	HTML,	or	the	\begin{document}	command	in	LaTeX).	This	can	be	used	to	include	navigation	bars	or	banners	in	HTML	documents.	This	option	can	be	used	repeatedly	to	include	multiple	files.	They	will	be	included	in	the
order	specified.	Implies	--standalone.	-A	FILE,	--include-after-body=FILE|URL	Include	contents	of	FILE,	verbatim,	at	the	end	of	the	document	body	(before	the	tag	in	HTML,	or	the	\end{document}	command	in	LaTeX).	This	option	can	be	used	repeatedly	to	include	multiple	files.	They	will	be	included	in	the	order	specified.	Implies	--standalone.	--
resource-path=SEARCHPATH	List	of	paths	to	search	for	images	and	other	resources.	The	paths	should	be	separated	by	:	on	Linux,	UNIX,	and	macOS	systems,	and	by	;	on	Windows.	If	--resource-path	is	not	specified,	the	default	resource	path	is	the	working	directory.	Note	that,	if	--resource-path	is	specified,	the	working	directory	must	be	explicitly
listed	or	it	will	not	be	searched.	For	example:	--resource-path=.:test	will	search	the	working	directory	and	the	test	subdirectory,	in	that	order.	This	option	can	be	used	repeatedly.	Search	path	components	that	come	later	on	the	command	line	will	be	searched	before	those	that	come	earlier,	so	--resource-path	foo:bar	--resource-path	baz:bim	is
equivalent	to	--resource-path	baz:bim:foo:bar.	Set	the	request	header	NAME	to	the	value	VAL	when	making	HTTP	requests	(for	example,	when	a	URL	is	given	on	the	command	line,	or	when	resources	used	in	a	document	must	be	downloaded).	If	you’re	behind	a	proxy,	you	also	need	to	set	the	environment	variable	http_proxy	to	http://....	--no-check-
certificate	Disable	the	certificate	verification	to	allow	access	to	unsecure	HTTP	resources	(for	example	when	the	certificate	is	no	longer	valid	or	self	signed).	--self-contained	Deprecated	synonym	for	--embed-resources	--standalone.	--embed-resources	Produce	a	standalone	HTML	file	with	no	external	dependencies,	using	data:	URIs	to	incorporate	the
contents	of	linked	scripts,	stylesheets,	images,	and	videos.	The	resulting	file	should	be	“self-contained,”	in	the	sense	that	it	needs	no	external	files	and	no	net	access	to	be	displayed	properly	by	a	browser.	This	option	works	only	with	HTML	output	formats,	including	html4,	html5,	html+lhs,	html5+lhs,	s5,	slidy,	slideous,	dzslides,	and	revealjs.	Scripts,
images,	and	stylesheets	at	absolute	URLs	will	be	downloaded;	those	at	relative	URLs	will	be	sought	relative	to	the	working	directory	(if	the	first	source	file	is	local)	or	relative	to	the	base	URL	(if	the	first	source	file	is	remote).	Elements	with	the	attribute	data-external="1"	will	be	left	alone;	the	documents	they	link	to	will	not	be	incorporated	in	the
document.	Limitation:	resources	that	are	loaded	dynamically	through	JavaScript	cannot	be	incorporated;	as	a	result,	some	advanced	features	(e.g.	zoom	or	speaker	notes)	may	not	work	in	an	offline	“self-contained”	reveal.js	slide	show.	--html-q-tags	Use	tags	for	quotes	in	HTML.	(This	option	only	has	an	effect	if	the	smart	extension	is	enabled	for	the
input	format	used.)	--ascii	Use	only	ASCII	characters	in	output.	Currently	supported	for	XML	and	HTML	formats	(which	use	entities	instead	of	UTF-8	when	this	option	is	selected),	CommonMark,	gfm,	and	Markdown	(which	use	entities),	roff	ms	(which	use	hexadecimal	escapes),	and	to	a	limited	degree	LaTeX	(which	uses	standard	commands	for
accented	characters	when	possible).	roff	man	output	uses	ASCII	by	default.	--reference-links	Use	reference-style	links,	rather	than	inline	links,	in	writing	Markdown	or	reStructuredText.	By	default	inline	links	are	used.	The	placement	of	link	references	is	affected	by	the	--reference-location	option.	--reference-location=block|section|document	Specify
whether	footnotes	(and	references,	if	reference-links	is	set)	are	placed	at	the	end	of	the	current	(top-level)	block,	the	current	section,	or	the	document.	The	default	is	document.	Currently	this	option	only	affects	the	markdown,	muse,	html,	epub,	slidy,	s5,	slideous,	dzslides,	and	revealjs	writers.	--markdown-headings=setext|atx	Specify	whether	to	use
ATX-style	(#-prefixed)	or	Setext-style	(underlined)	headings	for	level	1	and	2	headings	in	Markdown	output.	(The	default	is	atx.)	ATX-style	headings	are	always	used	for	levels	3+.	This	option	also	affects	Markdown	cells	in	ipynb	output.	Deprecated	synonym	for	--markdown-headings=atx.	--top-level-division=default|section|chapter|part	Treat	top-level
headings	as	the	given	division	type	in	LaTeX,	ConTeXt,	DocBook,	and	TEI	output.	The	hierarchy	order	is	part,	chapter,	then	section;	all	headings	are	shifted	such	that	the	top-level	heading	becomes	the	specified	type.	The	default	behavior	is	to	determine	the	best	division	type	via	heuristics:	unless	other	conditions	apply,	section	is	chosen.	When	the
documentclass	variable	is	set	to	report,	book,	or	memoir	(unless	the	article	option	is	specified),	chapter	is	implied	as	the	setting	for	this	option.	If	beamer	is	the	output	format,	specifying	either	chapter	or	part	will	cause	top-level	headings	to	become	\part{..},	while	second-level	headings	remain	as	their	default	type.	-N,	--number-sections	Number
section	headings	in	LaTeX,	ConTeXt,	HTML,	Docx,	ms,	or	EPUB	output.	By	default,	sections	are	not	numbered.	Sections	with	class	unnumbered	will	never	be	numbered,	even	if	--number-sections	is	specified.	--number-offset=NUMBER[,NUMBER,…]	Offset	for	section	headings	in	HTML	output	(ignored	in	other	output	formats).	The	first	number	is
added	to	the	section	number	for	top-level	headings,	the	second	for	second-level	headings,	and	so	on.	So,	for	example,	if	you	want	the	first	top-level	heading	in	your	document	to	be	numbered	“6”,	specify	--number-offset=5.	If	your	document	starts	with	a	level-2	heading	which	you	want	to	be	numbered	“1.5”,	specify	--number-offset=1,4.	Offsets	are	0
by	default.	Implies	--number-sections.	--listings	Use	the	listings	package	for	LaTeX	code	blocks.	The	package	does	not	support	multi-byte	encoding	for	source	code.	To	handle	UTF-8	you	would	need	to	use	a	custom	template.	This	issue	is	fully	documented	here:	Encoding	issue	with	the	listings	package.	-i,	--incremental	Make	list	items	in	slide	shows
display	incrementally	(one	by	one).	The	default	is	for	lists	to	be	displayed	all	at	once.	--slide-level=NUMBER	Specifies	that	headings	with	the	specified	level	create	slides	(for	beamer,	s5,	slidy,	slideous,	dzslides).	Headings	above	this	level	in	the	hierarchy	are	used	to	divide	the	slide	show	into	sections;	headings	below	this	level	create	subheads	within	a
slide.	Valid	values	are	0-6.	If	a	slide	level	of	0	is	specified,	slides	will	not	be	split	automatically	on	headings,	and	horizontal	rules	must	be	used	to	indicate	slide	boundaries.	If	a	slide	level	is	not	specified	explicitly,	the	slide	level	will	be	set	automatically	based	on	the	contents	of	the	document;	see	Structuring	the	slide	show.	--section-divs	Wrap	sections
in	tags	(or	tags	for	html4),	and	attach	identifiers	to	the	enclosing	(or)	rather	than	the	heading	itself.	See	Heading	identifiers,	below.	--email-obfuscation=none|javascript|references	Specify	a	method	for	obfuscating	mailto:	links	in	HTML	documents.	none	leaves	mailto:	links	as	they	are.	javascript	obfuscates	them	using	JavaScript.	references
obfuscates	them	by	printing	their	letters	as	decimal	or	hexadecimal	character	references.	The	default	is	none.	--id-prefix=STRING	Specify	a	prefix	to	be	added	to	all	identifiers	and	internal	links	in	HTML	and	DocBook	output,	and	to	footnote	numbers	in	Markdown	and	Haddock	output.	This	is	useful	for	preventing	duplicate	identifiers	when	generating
fragments	to	be	included	in	other	pages.	-T	STRING,	--title-prefix=STRING	Specify	STRING	as	a	prefix	at	the	beginning	of	the	title	that	appears	in	the	HTML	header	(but	not	in	the	title	as	it	appears	at	the	beginning	of	the	HTML	body).	Implies	--standalone.	-c	URL,	--css=URL	Link	to	a	CSS	style	sheet.	This	option	can	be	used	repeatedly	to	include
multiple	files.	They	will	be	included	in	the	order	specified.	A	stylesheet	is	required	for	generating	EPUB.	If	none	is	provided	using	this	option	(or	the	css	or	stylesheet	metadata	fields),	pandoc	will	look	for	a	file	epub.css	in	the	user	data	directory	(see	--data-dir).	If	it	is	not	found	there,	sensible	defaults	will	be	used.	--reference-doc=FILE	Use	the
specified	file	as	a	style	reference	in	producing	a	docx	or	ODT	file.	Docx	For	best	results,	the	reference	docx	should	be	a	modified	version	of	a	docx	file	produced	using	pandoc.	The	contents	of	the	reference	docx	are	ignored,	but	its	stylesheets	and	document	properties	(including	margins,	page	size,	header,	and	footer)	are	used	in	the	new	docx.	If	no
reference	docx	is	specified	on	the	command	line,	pandoc	will	look	for	a	file	reference.docx	in	the	user	data	directory	(see	--data-dir).	If	this	is	not	found	either,	sensible	defaults	will	be	used.	To	produce	a	custom	reference.docx,	first	get	a	copy	of	the	default	reference.docx:	pandoc	-o	custom-reference.docx	--print-default-data-file	reference.docx.	Then
open	custom-reference.docx	in	Word,	modify	the	styles	as	you	wish,	and	save	the	file.	For	best	results,	do	not	make	changes	to	this	file	other	than	modifying	the	styles	used	by	pandoc:	Paragraph	styles:	Normal	Body	Text	First	Paragraph	Compact	Title	Subtitle	Author	Date	Abstract	Bibliography	Heading	1	Heading	2	Heading	3	Heading	4	Heading	5
Heading	6	Heading	7	Heading	8	Heading	9	Block	Text	Source	Code	Footnote	Text	Definition	Term	Definition	Caption	Table	Caption	Image	Caption	Figure	Captioned	Figure	TOC	Heading	Character	styles:	Default	Paragraph	Font	Body	Text	Char	Verbatim	Char	Footnote	Reference	Hyperlink	Section	Number	Table	style:	ODT	For	best	results,	the
reference	ODT	should	be	a	modified	version	of	an	ODT	produced	using	pandoc.	The	contents	of	the	reference	ODT	are	ignored,	but	its	stylesheets	are	used	in	the	new	ODT.	If	no	reference	ODT	is	specified	on	the	command	line,	pandoc	will	look	for	a	file	reference.odt	in	the	user	data	directory	(see	--data-dir).	If	this	is	not	found	either,	sensible	defaults
will	be	used.	To	produce	a	custom	reference.odt,	first	get	a	copy	of	the	default	reference.odt:	pandoc	-o	custom-reference.odt	--print-default-data-file	reference.odt.	Then	open	custom-reference.odt	in	LibreOffice,	modify	the	styles	as	you	wish,	and	save	the	file.	PowerPoint	Templates	included	with	Microsoft	PowerPoint	2013	(either	with	.pptx	or	.potx
extension)	are	known	to	work,	as	are	most	templates	derived	from	these.	The	specific	requirement	is	that	the	template	should	contain	layouts	with	the	following	names	(as	seen	within	PowerPoint):	Title	Slide	Title	and	Content	Section	Header	Two	Content	Comparison	Content	with	Caption	Blank	For	each	name,	the	first	layout	found	with	that	name
will	be	used.	If	no	layout	is	found	with	one	of	the	names,	pandoc	will	output	a	warning	and	use	the	layout	with	that	name	from	the	default	reference	doc	instead.	(How	these	layouts	are	used	is	described	in	PowerPoint	layout	choice.)	All	templates	included	with	a	recent	version	of	MS	PowerPoint	will	fit	these	criteria.	(You	can	click	on	Layout	under	the
Home	menu	to	check.)	You	can	also	modify	the	default	reference.pptx:	first	run	pandoc	-o	custom-reference.pptx	--print-default-data-file	reference.pptx,	and	then	modify	custom-reference.pptx	in	MS	PowerPoint	(pandoc	will	use	the	layouts	with	the	names	listed	above).	--epub-cover-image=FILE	Use	the	specified	image	as	the	EPUB	cover.	It	is
recommended	that	the	image	be	less	than	1000px	in	width	and	height.	Note	that	in	a	Markdown	source	document	you	can	also	specify	cover-image	in	a	YAML	metadata	block	(see	EPUB	Metadata,	below).	Look	in	the	specified	XML	file	for	metadata	for	the	EPUB.	The	file	should	contain	a	series	of	Dublin	Core	elements.	For	example:	Creative
Commons	es-AR	By	default,	pandoc	will	include	the	following	metadata	elements:	(from	the	document	title),	(from	the	document	authors),	(from	the	document	date,	which	should	be	in	ISO	8601	format),	(from	the	lang	variable,	or,	if	is	not	set,	the	locale),	and	(a	randomly	generated	UUID).	Any	of	these	may	be	overridden	by	elements	in	the	metadata
file.	Note:	if	the	source	document	is	Markdown,	a	YAML	metadata	block	in	the	document	can	be	used	instead.	See	below	under	EPUB	Metadata.	--epub-embed-font=FILE	Embed	the	specified	font	in	the	EPUB.	This	option	can	be	repeated	to	embed	multiple	fonts.	Wildcards	can	also	be	used:	for	example,	DejaVuSans-*.ttf.	However,	if	you	use	wildcards
on	the	command	line,	be	sure	to	escape	them	or	put	the	whole	filename	in	single	quotes,	to	prevent	them	from	being	interpreted	by	the	shell.	To	use	the	embedded	fonts,	you	will	need	to	add	declarations	like	the	following	to	your	CSS	(see	--css):	@font-face	{	font-family:	DejaVuSans;	font-style:	normal;	font-weight:	normal;	src:url("DejaVuSans-
Regular.ttf");	}	@font-face	{	font-family:	DejaVuSans;	font-style:	normal;	font-weight:	bold;	src:url("DejaVuSans-Bold.ttf");	}	@font-face	{	font-family:	DejaVuSans;	font-style:	italic;	font-weight:	normal;	src:url("DejaVuSans-Oblique.ttf");	}	@font-face	{	font-family:	DejaVuSans;	font-style:	italic;	font-weight:	bold;	src:url("DejaVuSans-BoldOblique.ttf");	}
body	{	font-family:	"DejaVuSans";	}	--epub-chapter-level=NUMBER	Specify	the	heading	level	at	which	to	split	the	EPUB	into	separate	“chapter”	files.	The	default	is	to	split	into	chapters	at	level-1	headings.	This	option	only	affects	the	internal	composition	of	the	EPUB,	not	the	way	chapters	and	sections	are	displayed	to	users.	Some	readers	may	be
slow	if	the	chapter	files	are	too	large,	so	for	large	documents	with	few	level-1	headings,	one	might	want	to	use	a	chapter	level	of	2	or	3.	--epub-subdirectory=DIRNAME	Specify	the	subdirectory	in	the	OCF	container	that	is	to	hold	the	EPUB-specific	contents.	The	default	is	EPUB.	To	put	the	EPUB	contents	in	the	top	level,	use	an	empty	string.	--ipynb-
output=all|none|best	Determines	how	ipynb	output	cells	are	treated.	all	means	that	all	of	the	data	formats	included	in	the	original	are	preserved.	none	means	that	the	contents	of	data	cells	are	omitted.	best	causes	pandoc	to	try	to	pick	the	richest	data	block	in	each	output	cell	that	is	compatible	with	the	output	format.	The	default	is	best.	--pdf-
engine=PROGRAM	Use	the	specified	engine	when	producing	PDF	output.	Valid	values	are	pdflatex,	lualatex,	xelatex,	latexmk,	tectonic,	wkhtmltopdf,	weasyprint,	pagedjs-cli,	prince,	context,	and	pdfroff.	If	the	engine	is	not	in	your	PATH,	the	full	path	of	the	engine	may	be	specified	here.	If	this	option	is	not	specified,	pandoc	uses	the	following	defaults
depending	on	the	output	format	specified	using	-t/--to:	-t	latex	or	none:	pdflatex	(other	options:	xelatex,	lualatex,	tectonic,	latexmk)	-t	context:	context	-t	html:	wkhtmltopdf	(other	options:	prince,	weasyprint,	pagedjs-cli;	see	print-css.rocks	for	a	good	introduction	to	PDF	generation	from	HTML/CSS)	-t	ms:	pdfroff	--pdf-engine-opt=STRING	Use	the	given
string	as	a	command-line	argument	to	the	pdf-engine.	For	example,	to	use	a	persistent	directory	foo	for	latexmk’s	auxiliary	files,	use	--pdf-engine-opt=-outdir=foo.	Note	that	no	check	for	duplicate	options	is	done.	-C,	--citeproc	Process	the	citations	in	the	file,	replacing	them	with	rendered	citations	and	adding	a	bibliography.	Citation	processing	will	not
take	place	unless	bibliographic	data	is	supplied,	either	through	an	external	file	specified	using	the	--bibliography	option	or	the	bibliography	field	in	metadata,	or	via	a	references	section	in	metadata	containing	a	list	of	citations	in	CSL	YAML	format	with	Markdown	formatting.	The	style	is	controlled	by	a	CSL	stylesheet	specified	using	the	--csl	option	or
the	csl	field	in	metadata.	(If	no	stylesheet	is	specified,	the	chicago-author-date	style	will	be	used	by	default.)	The	citation	processing	transformation	may	be	applied	before	or	after	filters	or	Lua	filters	(see	--filter,	--lua-filter):	these	transformations	are	applied	in	the	order	they	appear	on	the	command	line.	For	more	information,	see	the	section	on
Citations.	--bibliography=FILE	Set	the	bibliography	field	in	the	document’s	metadata	to	FILE,	overriding	any	value	set	in	the	metadata.	If	you	supply	this	argument	multiple	times,	each	FILE	will	be	added	to	bibliography.	If	FILE	is	a	URL,	it	will	be	fetched	via	HTTP.	If	FILE	is	not	found	relative	to	the	working	directory,	it	will	be	sought	in	the	resource
path	(see	--resource-path).	--csl=FILE	Set	the	csl	field	in	the	document’s	metadata	to	FILE,	overriding	any	value	set	in	the	metadata.	(This	is	equivalent	to	--metadata	csl=FILE.)	If	FILE	is	a	URL,	it	will	be	fetched	via	HTTP.	If	FILE	is	not	found	relative	to	the	working	directory,	it	will	be	sought	in	the	resource	path	(see	--resource-path)	and	finally	in	the
csl	subdirectory	of	the	pandoc	user	data	directory.	--citation-abbreviations=FILE	Set	the	citation-abbreviations	field	in	the	document’s	metadata	to	FILE,	overriding	any	value	set	in	the	metadata.	(This	is	equivalent	to	--metadata	citation-abbreviations=FILE.)	If	FILE	is	a	URL,	it	will	be	fetched	via	HTTP.	If	FILE	is	not	found	relative	to	the	working
directory,	it	will	be	sought	in	the	resource	path	(see	--resource-path)	and	finally	in	the	csl	subdirectory	of	the	pandoc	user	data	directory.	--natbib	Use	natbib	for	citations	in	LaTeX	output.	This	option	is	not	for	use	with	the	--citeproc	option	or	with	PDF	output.	It	is	intended	for	use	in	producing	a	LaTeX	file	that	can	be	processed	with	bibtex.	--biblatex
Use	biblatex	for	citations	in	LaTeX	output.	This	option	is	not	for	use	with	the	--citeproc	option	or	with	PDF	output.	It	is	intended	for	use	in	producing	a	LaTeX	file	that	can	be	processed	with	bibtex	or	biber.	The	default	is	to	render	TeX	math	as	far	as	possible	using	Unicode	characters.	Formulas	are	put	inside	a	span	with	class="math",	so	that	they	may
be	styled	differently	from	the	surrounding	text	if	needed.	However,	this	gives	acceptable	results	only	for	basic	math,	usually	you	will	want	to	use	--mathjax	or	another	of	the	following	options.	--mathjax[=URL]	Use	MathJax	to	display	embedded	TeX	math	in	HTML	output.	TeX	math	will	be	put	between	\(...\)	(for	inline	math)	or	\[...\]	(for	display	math)
and	wrapped	in	tags	with	class	math.	Then	the	MathJax	JavaScript	will	render	it.	The	URL	should	point	to	the	MathJax.js	load	script.	If	a	URL	is	not	provided,	a	link	to	the	Cloudflare	CDN	will	be	inserted.	--mathml	Convert	TeX	math	to	MathML	(in	epub3,	docbook4,	docbook5,	jats,	html4	and	html5).	This	is	the	default	in	odt	output.	Note	that	currently
only	Firefox	and	Safari	(and	select	e-book	readers)	natively	support	MathML.	--webtex[=URL]	Convert	TeX	formulas	to	tags	that	link	to	an	external	script	that	converts	formulas	to	images.	The	formula	will	be	URL-encoded	and	concatenated	with	the	URL	provided.	For	SVG	images	you	can	for	example	use	--webtex	.	If	no	URL	is	specified,	the
CodeCogs	URL	generating	PNGs	will	be	used	().	Note:	the	--webtex	option	will	affect	Markdown	output	as	well	as	HTML,	which	is	useful	if	you’re	targeting	a	version	of	Markdown	without	native	math	support.	--katex[=URL]	Use	KaTeX	to	display	embedded	TeX	math	in	HTML	output.	The	URL	is	the	base	URL	for	the	KaTeX	library.	That	directory
should	contain	a	katex.min.js	and	a	katex.min.css	file.	If	a	URL	is	not	provided,	a	link	to	the	KaTeX	CDN	will	be	inserted.	--gladtex	Enclose	TeX	math	in	tags	in	HTML	output.	The	resulting	HTML	can	then	be	processed	by	GladTeX	to	produce	SVG	images	of	the	typeset	formulas	and	an	HTML	file	with	these	images	embedded.	pandoc	-s	--gladtex
input.md	-o	myfile.htex	gladtex	-d	image_dir	myfile.htex	#	produces	myfile.html	and	images	in	image_dir	--dump-args	Print	information	about	command-line	arguments	to	stdout,	then	exit.	This	option	is	intended	primarily	for	use	in	wrapper	scripts.	The	first	line	of	output	contains	the	name	of	the	output	file	specified	with	the	-o	option,	or	-	(for	stdout)
if	no	output	file	was	specified.	The	remaining	lines	contain	the	command-line	arguments,	one	per	line,	in	the	order	they	appear.	These	do	not	include	regular	pandoc	options	and	their	arguments,	but	do	include	any	options	appearing	after	a	--	separator	at	the	end	of	the	line.	--ignore-args	Ignore	command-line	arguments	(for	use	in	wrapper	scripts).
Regular	pandoc	options	are	not	ignored.	Thus,	for	example,	pandoc	--ignore-args	-o	foo.html	-s	foo.txt	--	-e	latin1	is	equivalent	to	pandoc	-o	foo.html	-s	If	pandoc	completes	successfully,	it	will	return	exit	code	0.	Nonzero	exit	codes	have	the	following	meanings:	1	PandocIOError	3	PandocFailOnWarningError	4	PandocAppError	5	PandocTemplateError	6
PandocOptionError	21	PandocUnknownReaderError	22	PandocUnknownWriterError	23	PandocUnsupportedExtensionError	24	PandocCiteprocError	25	PandocBibliographyError	31	PandocEpubSubdirectoryError	43	PandocPDFError	44	PandocXMLError	47	PandocPDFProgramNotFoundError	61	PandocHttpError	62
PandocShouldNeverHappenError	63	PandocSomeError	64	PandocParseError	65	PandocParsecError	66	PandocMakePDFError	67	PandocSyntaxMapError	83	PandocFilterError	84	PandocLuaError	91	PandocMacroLoop	92	PandocUTF8DecodingError	93	PandocIpynbDecodingError	94	PandocUnsupportedCharsetError	97
PandocCouldNotFindDataFileError	98	PandocCouldNotFindMetadataFileError	99	PandocResourceNotFound	The	--defaults	option	may	be	used	to	specify	a	package	of	options,	in	the	form	of	a	YAML	file.	Fields	that	are	omitted	will	just	have	their	regular	default	values.	So	a	defaults	file	can	be	as	simple	as	one	line:	In	fields	that	expect	a	file	path	(or
list	of	file	paths),	the	following	syntax	may	be	used	to	interpolate	environment	variables:	csl:	${HOME}/mycsldir/special.csl	${USERDATA}	may	also	be	used;	this	will	always	resolve	to	the	user	data	directory	that	is	current	when	the	defaults	file	is	parsed,	regardless	of	the	setting	of	the	environment	variable	USERDATA.	${.}	will	resolve	to	the
directory	containing	the	defaults	file	itself.	This	allows	you	to	refer	to	resources	contained	in	that	directory:	epub-cover-image:	${.}/cover.jpg	epub-metadata:	${.}/meta.xml	resource-path:	-	.	#	the	working	directory	from	which	pandoc	is	run	-	${.}/images	#	the	images	subdirectory	of	the	directory	#	containing	this	defaults	file	This	environment
variable	interpolation	syntax	only	works	in	fields	that	expect	file	paths.	Defaults	files	can	be	placed	in	the	defaults	subdirectory	of	the	user	data	directory	and	used	from	any	directory.	For	example,	one	could	create	a	file	specifying	defaults	for	writing	letters,	save	it	as	letter.yaml	in	the	defaults	subdirectory	of	the	user	data	directory,	and	then	invoke
these	defaults	from	any	directory	using	pandoc	--defaults	letter	or	pandoc	-dletter.	When	multiple	defaults	are	used,	their	contents	will	be	combined.	Note	that,	where	command-line	arguments	may	be	repeated	(--metadata-file,	--css,	--include-in-header,	--include-before-body,	--include-after-body,	--variable,	--metadata,	--syntax-definition),	the	values
specified	on	the	command	line	will	combine	with	values	specified	in	the	defaults	file,	rather	than	replacing	them.	The	following	tables	show	the	mapping	between	the	command	line	and	defaults	file	entries.	foo.md	foo.md	bar.md	input-files:	-	foo.md	-	bar.md	The	value	of	input-files	may	be	left	empty	to	indicate	input	from	stdin,	and	it	can	be	an	empty
sequence	[]	for	no	input.	--from	markdown+emoji	--to	markdown+hard_line_breaks	to:	markdown+hard_line_breaks	writer:	markdown+hard_line_breaks	--output	foo.pdf	--output	-	--data-dir	dir	--defaults	file	--verbose	--quiet	--fail-if-warnings	--sandbox	--log=FILE	Options	specified	in	a	defaults	file	itself	always	have	priority	over	those	in	another	file
included	with	a	defaults:	entry.	verbosity	can	have	the	values	ERROR,	WARNING,	or	INFO.	--shift-heading-level-by	-1	shift-heading-level-by:	-1	--indented-code-classes	python	indented-code-classes:	-	python	--default-image-extension	".jpg"	default-image-extension:	'.jpg'	--file-scope	--filter	pandoc-citeproc	\	--lua-filter	count-words.lua	\	--filter	special.lua
filters:	-	pandoc-citeproc	-	count-words.lua	-	type:	json	path:	special.lua	--metadata	key=value	\	--metadata	key2	metadata:	key:	value	key2:	true	--metadata-file	meta.yaml	metadata-files:	-	meta.yaml	--preserve-tabs	--tab-stop	8	--track-changes	accept	--extract-media	dir	--abbreviations	abbrevs.txt	abbreviations:	abbrevs.txt	--trace	Metadata	values
specified	in	a	defaults	file	are	parsed	as	literal	string	text,	not	Markdown.	Filters	will	be	assumed	to	be	Lua	filters	if	they	have	the	.lua	extension,	and	JSON	filters	otherwise.	But	the	filter	type	can	also	be	specified	explicitly,	as	shown.	Filters	are	run	in	the	order	specified.	To	include	the	built-in	citeproc	filter,	use	either	citeproc	or	{type:	citeproc}.	--
standalone	--template	letter	--variable	key=val	\	--variable	key2	variables:	key:	val	key2:	true	--eol	nl	--dpi	300	--wrap	60	--columns	72	--table-of-contents	--toc	--toc-depth	3	--strip-comments	--no-highlight	--highlight-style	kate	--syntax-definition	mylang.xml	syntax-definitions:	-	mylang.xml	syntax-definition:	mylang.xml	--include-in-header	inc.tex	include-
in-header:	-	inc.tex	--include-before-body	inc.tex	include-before-body:	-	inc.tex	--include-after-body	inc.tex	include-after-body:	-	inc.tex	--resource-path	.:foo	resource-path:	['.','foo']	--request-header	foo:bar	request-headers:	-	["User-Agent",	"Mozilla/5.0"]	--no-check-certificate	no-check-certificate:	true	--self-contained	--html-q-tags	--ascii	--reference-links	-
-reference-location	block	reference-location:	block	--markdown-headings	atx	--top-level-division	chapter	top-level-division:	chapter	--number-sections	--number-offset=1,4	--listings	--incremental	--slide-level	2	--section-divs	--email-obfuscation	references	email-obfuscation:	references	--id-prefix	ch1	--title-prefix	MySite	--css	styles/screen.css	\	--css
styles/special.css	css:	-	styles/screen.css	-	styles/special.css	--reference-doc	my.docx	--epub-cover-image	cover.jpg	epub-cover-image:	cover.jpg	--epub-metadata	meta.xml	--epub-embed-font	special.otf	\	--epub-embed-font	headline.otf	epub-fonts:	-	special.otf	-	headline.otf	--epub-chapter-level	2	--epub-subdirectory=""	--ipynb-output	best	--pdf-engine
xelatex	--pdf-engine-opt=--shell-escape	pdf-engine-opts:	-	'-shell-escape'	pdf-engine-opt:	'-shell-escape'	--citeproc	--bibliography	logic.bib	metadata:	bibliography:	logic.bib	--csl	ieee.csl	--citation-abbreviations	ab.json	metadata:	citation-abbreviations:	ab.json	--natbib	--biblatex	cite-method	can	be	citeproc,	natbib,	or	biblatex.	This	only	affects	LaTeX
output.	If	you	want	to	use	citeproc	to	format	citations,	you	should	also	set	‘citeproc:	true’.	If	you	need	control	over	when	the	citeproc	processing	is	done	relative	to	other	filters,	you	should	instead	use	citeproc	in	the	list	of	filters	(see	above).	--mathjax	html-math-method:	method:	mathjax	--mathml	html-math-method:	method:	mathml	--webtex	html-
math-method:	method:	webtex	--katex	html-math-method:	method:	katex	--gladtex	html-math-method:	method:	gladtex	In	addition	to	the	values	listed	above,	method	can	have	the	value	plain.	If	the	command	line	option	accepts	a	URL	argument,	an	url:	field	can	be	added	to	html-math-method:.	--dump-args	--ignore-args	When	the	-s/--standalone	option
is	used,	pandoc	uses	a	template	to	add	header	and	footer	material	that	is	needed	for	a	self-standing	document.	To	see	the	default	template	that	is	used,	just	type	pandoc	-D	*FORMAT*	where	FORMAT	is	the	name	of	the	output	format.	A	custom	template	can	be	specified	using	the	--template	option.	You	can	also	override	the	system	default	templates
for	a	given	output	format	FORMAT	by	putting	a	file	templates/default.*FORMAT*	in	the	user	data	directory	(see	--data-dir,	above).	Exceptions:	For	odt	output,	customize	the	default.opendocument	template.	For	pdf	output,	customize	the	default.latex	template	(or	the	default.context	template,	if	you	use	-t	context,	or	the	default.ms	template,	if	you	use	-
t	ms,	or	the	default.html	template,	if	you	use	-t	html).	docx	and	pptx	have	no	template	(however,	you	can	use	--reference-doc	to	customize	the	output).	Templates	contain	variables,	which	allow	for	the	inclusion	of	arbitrary	information	at	any	point	in	the	file.	They	may	be	set	at	the	command	line	using	the	-V/--variable	option.	If	a	variable	is	not	set,
pandoc	will	look	for	the	key	in	the	document’s	metadata,	which	can	be	set	using	either	YAML	metadata	blocks	or	with	the	-M/--metadata	option.	In	addition,	some	variables	are	given	default	values	by	pandoc.	See	Variables	below	for	a	list	of	variables	used	in	pandoc’s	default	templates.	If	you	use	custom	templates,	you	may	need	to	revise	them	as
pandoc	changes.	We	recommend	tracking	the	changes	in	the	default	templates,	and	modifying	your	custom	templates	accordingly.	An	easy	way	to	do	this	is	to	fork	the	pandoc-templates	repository	and	merge	in	changes	after	each	pandoc	release.	To	mark	variables	and	control	structures	in	the	template,	either	$…$	or	${…}	may	be	used	as	delimiters.
The	styles	may	also	be	mixed	in	the	same	template,	but	the	opening	and	closing	delimiter	must	match	in	each	case.	The	opening	delimiter	may	be	followed	by	one	or	more	spaces	or	tabs,	which	will	be	ignored.	The	closing	delimiter	may	be	followed	by	one	or	more	spaces	or	tabs,	which	will	be	ignored.	To	include	a	literal	$	in	the	document,	use	$$.	A
slot	for	an	interpolated	variable	is	a	variable	name	surrounded	by	matched	delimiters.	Variable	names	must	begin	with	a	letter	and	can	contain	letters,	numbers,	_,	-,	and	..	The	keywords	it,	if,	else,	endif,	for,	sep,	and	endfor	may	not	be	used	as	variable	names.	Examples:	foo	$foo.bar.baz$	$foo_bar.baz-bim$	$	foo	$	${foo}	${foo.bar.baz}
${foo_bar.baz-bim}	${	foo	}	Variable	names	with	periods	are	used	to	get	at	structured	variable	values.	So,	for	example,	employee.salary	will	return	the	value	of	the	salary	field	of	the	object	that	is	the	value	of	the	employee	field.	If	the	value	of	the	variable	is	a	simple	value,	it	will	be	rendered	verbatim.	(Note	that	no	escaping	is	done;	the	assumption	is
that	the	calling	program	will	escape	the	strings	appropriately	for	the	output	format.)	If	the	value	is	a	list,	the	values	will	be	concatenated.	If	the	value	is	a	map,	the	string	true	will	be	rendered.	Every	other	value	will	be	rendered	as	the	empty	string.	A	conditional	begins	with	if(variable)	(enclosed	in	matched	delimiters)	and	ends	with	endif	(enclosed	in
matched	delimiters).	It	may	optionally	contain	an	else	(enclosed	in	matched	delimiters).	The	if	section	is	used	if	variable	has	a	non-empty	value,	otherwise	the	else	section	is	used	(if	present).	Examples:	$if(foo)$bar$endif$	$if(foo)$	foo	$endif$	$if(foo)$	part	one	$else$	part	two	$endif$	${if(foo)}bar${endif}	${if(foo)}	${foo}	${endif}	${if(foo)}	${
foo.bar	}	${else}	no	foo!	${endif}	The	keyword	elseif	may	be	used	to	simplify	complex	nested	conditionals:	$if(foo)$	XXX	$elseif(bar)$	YYY	$else$	ZZZ	$endif$	A	for	loop	begins	with	for(variable)	(enclosed	in	matched	delimiters)	and	ends	with	endfor	(enclosed	in	matched	delimiters).	If	variable	is	an	array,	the	material	inside	the	loop	will	be	evaluated
repeatedly,	with	variable	being	set	to	each	value	of	the	array	in	turn,	and	concatenated.	If	variable	is	a	map,	the	material	inside	will	be	set	to	the	map.	If	the	value	of	the	associated	variable	is	not	an	array	or	a	map,	a	single	iteration	will	be	performed	on	its	value.	Examples:	$for(foo)$$foo$$sep$,	$endfor$	$for(foo)$	-	$foo.last$,	$foo.first$	$endfor$	${
for(foo.bar)	}	-	${	foo.bar.last	},	${	foo.bar.first	}	${	endfor	}	$for(mymap)$	$it.name$:	$it.office$	$endfor$	You	may	optionally	specify	a	separator	between	consecutive	values	using	sep	(enclosed	in	matched	delimiters).	The	material	between	sep	and	the	endfor	is	the	separator.	${	for(foo)	}${	foo	}${	sep	},	${	endfor	}	Instead	of	using	variable
inside	the	loop,	the	special	anaphoric	keyword	it	may	be	used.	${	for(foo.bar)	}	-	${	it.last	},	${	it.first	}	${	endfor	}	Partials	(subtemplates	stored	in	different	files)	may	be	included	by	using	the	name	of	the	partial,	followed	by	(),	for	example:	${	styles()	}	Partials	will	be	sought	in	the	directory	containing	the	main	template.	The	file	name	will	be
assumed	to	have	the	same	extension	as	the	main	template	if	it	lacks	an	extension.	When	calling	the	partial,	the	full	name	including	file	extension	can	also	be	used:	${	styles.html()	}	(If	a	partial	is	not	found	in	the	directory	of	the	template	and	the	template	path	is	given	as	a	relative	path,	it	will	also	be	sought	in	the	templates	subdirectory	of	the	user
data	directory.)	Partials	may	optionally	be	applied	to	variables	using	a	colon:	${	date:fancy()	}	${	articles:bibentry()	}	If	articles	is	an	array,	this	will	iterate	over	its	values,	applying	the	partial	bibentry()	to	each	one.	So	the	second	example	above	is	equivalent	to	${	for(articles)	}	${	it:bibentry()	}	${	endfor	}	Note	that	the	anaphoric	keyword	it	must	be
used	when	iterating	over	partials.	In	the	above	examples,	the	bibentry	partial	should	contain	it.title	(and	so	on)	instead	of	articles.title.	Final	newlines	are	omitted	from	included	partials.	Partials	may	include	other	partials.	A	separator	between	values	of	an	array	may	be	specified	in	square	brackets,	immediately	after	the	variable	name	or	partial:
${months[,]}$	${articles:bibentry()[;]$	The	separator	in	this	case	is	literal	and	(unlike	with	sep	in	an	explicit	for	loop)	cannot	contain	interpolated	variables	or	other	template	directives.	To	ensure	that	content	is	“nested,”	that	is,	subsequent	lines	indented,	use	the	^	directive:	$item.number$	$^$$item.description$	($item.price$)	In	this	example,	if
item.description	has	multiple	lines,	they	will	all	be	indented	to	line	up	with	the	first	line:	00123	A	fine	bottle	of	18-year	old	Oban	whiskey.	($148)	To	nest	multiple	lines	to	the	same	level,	align	them	with	the	^	directive	in	the	template.	For	example:	$item.number$	$^$$item.description$	($item.price$)	(Available	til	$item.sellby$.)	will	produce	00123	A
fine	bottle	of	18-year	old	Oban	whiskey.	($148)	(Available	til	March	30,	2020.)	If	a	variable	occurs	by	itself	on	a	line,	preceded	by	whitespace	and	not	followed	by	further	text	or	directives	on	the	same	line,	and	the	variable’s	value	contains	multiple	lines,	it	will	be	nested	automatically.	Normally,	spaces	in	the	template	itself	(as	opposed	to	values	of	the
interpolated	variables)	are	not	breakable,	but	they	can	be	made	breakable	in	part	of	the	template	by	using	the	~	keyword	(ended	with	another	~).	$~$This	long	line	may	break	if	the	document	is	rendered	with	a	short	line	length.$~$	A	pipe	transforms	the	value	of	a	variable	or	partial.	Pipes	are	specified	using	a	slash	(/)	between	the	variable	name	(or
partial)	and	the	pipe	name.	Example:	$for(name)$	$name/uppercase$	$endfor$	$for(metadata/pairs)$	-	$it.key$:	$it.value$	$endfor$	$employee:name()/uppercase$	Pipes	may	be	chained:	$for(employees/pairs)$	$it.key/alpha/uppercase$.	$it.name$	$endfor$	Some	pipes	take	parameters:	|----------------------|------------|	$for(employee)$
$it.name.first/uppercase/left	20	"|	"$$it.name.salary/right	10	"	|	"	"	|"$	$endfor$	|----------------------|------------|	Currently	the	following	pipes	are	predefined:	pairs:	Converts	a	map	or	array	to	an	array	of	maps,	each	with	key	and	value	fields.	If	the	original	value	was	an	array,	the	key	will	be	the	array	index,	starting	with	1.	uppercase:	Converts	text	to
uppercase.	lowercase:	Converts	text	to	lowercase.	length:	Returns	the	length	of	the	value:	number	of	characters	for	a	textual	value,	number	of	elements	for	a	map	or	array.	reverse:	Reverses	a	textual	value	or	array,	and	has	no	effect	on	other	values.	first:	Returns	the	first	value	of	an	array,	if	applied	to	a	non-empty	array;	otherwise	returns	the	original
value.	last:	Returns	the	last	value	of	an	array,	if	applied	to	a	non-empty	array;	otherwise	returns	the	original	value.	rest:	Returns	all	but	the	first	value	of	an	array,	if	applied	to	a	non-empty	array;	otherwise	returns	the	original	value.	allbutlast:	Returns	all	but	the	last	value	of	an	array,	if	applied	to	a	non-empty	array;	otherwise	returns	the	original
value.	chomp:	Removes	trailing	newlines	(and	breakable	space).	nowrap:	Disables	line	wrapping	on	breakable	spaces.	alpha:	Converts	textual	values	that	can	be	read	as	an	integer	into	lowercase	alphabetic	characters	a..z	(mod	26).	This	can	be	used	to	get	lettered	enumeration	from	array	indices.	To	get	uppercase	letters,	chain	with	uppercase.	roman:
Converts	textual	values	that	can	be	read	as	an	integer	into	lowercase	roman	numerals.	This	can	be	used	to	get	lettered	enumeration	from	array	indices.	To	get	uppercase	roman,	chain	with	uppercase.	left	n	"leftborder"	"rightborder":	Renders	a	textual	value	in	a	block	of	width	n,	aligned	to	the	left,	with	an	optional	left	and	right	border.	Has	no	effect
on	other	values.	This	can	be	used	to	align	material	in	tables.	Widths	are	positive	integers	indicating	the	number	of	characters.	Borders	are	strings	inside	double	quotes;	literal	"	and	\	characters	must	be	backslash-escaped.	right	n	"leftborder"	"rightborder":	Renders	a	textual	value	in	a	block	of	width	n,	aligned	to	the	right,	and	has	no	effect	on	other
values.	center	n	"leftborder"	"rightborder":	Renders	a	textual	value	in	a	block	of	width	n,	aligned	to	the	center,	and	has	no	effect	on	other	values.	lang	identifies	the	main	language	of	the	document	using	IETF	language	tags	(following	the	BCP	47	standard),	such	as	en	or	en-GB.	The	Language	subtag	lookup	tool	can	look	up	or	verify	these	tags.	This
affects	most	formats,	and	controls	hyphenation	in	PDF	output	when	using	LaTeX	(through	babel	and	polyglossia)	or	ConTeXt.	Use	native	pandoc	Divs	and	Spans	with	the	lang	attribute	to	switch	the	language:	---	lang:	en-GB	...	Text	in	the	main	document	language	(British	English).	:::	{lang=fr-CA}	>	Cette	citation	est	écrite	en	français	canadien.	:::
More	text	in	English.	['Zitat	auf	Deutsch.']{lang=de}	dir	the	base	script	direction,	either	rtl	(right-to-left)	or	ltr	(left-to-right).	For	bidirectional	documents,	native	pandoc	spans	and	divs	with	the	dir	attribute	(value	rtl	or	ltr)	can	be	used	to	override	the	base	direction	in	some	output	formats.	This	may	not	always	be	necessary	if	the	final	renderer
(e.g.	the	browser,	when	generating	HTML)	supports	the	Unicode	Bidirectional	Algorithm.	When	using	LaTeX	for	bidirectional	documents,	only	the	xelatex	engine	is	fully	supported	(use	--pdf-engine=xelatex).	document-css	Enables	inclusion	of	most	of	the	CSS	in	the	styles.html	partial	(have	a	look	with	pandoc	--print-default-data-
file=templates/styles.html).	Unless	you	use	--css,	this	variable	is	set	to	true	by	default.	You	can	disable	it	with	e.g.	pandoc	-M	document-css=false.	mainfont	sets	the	CSS	font-family	property	on	the	html	element.	fontsize	sets	the	base	CSS	font-size,	which	you’d	usually	set	to	e.g.	20px,	but	it	also	accepts	pt	(12pt	=	16px	in	most	browsers).	fontcolor
sets	the	CSS	color	property	on	the	html	element.	linkcolor	sets	the	CSS	color	property	on	all	links.	monofont	sets	the	CSS	font-family	property	on	code	elements.	monobackgroundcolor	sets	the	CSS	background-color	property	on	code	elements	and	adds	extra	padding.	linestretch	sets	the	CSS	line-height	property	on	the	html	element,	which	is
preferred	to	be	unitless.	backgroundcolor	sets	the	CSS	background-color	property	on	the	html	element.	margin-left,	margin-right,	margin-top,	margin-bottom	sets	the	corresponding	CSS	padding	properties	on	the	body	element.	To	override	or	extend	some	CSS	for	just	one	document,	include	for	example:	---	header-includes:	|	blockquote	{	font-style:
italic;	}	tr.even	{	background-color:	#f0f0f0;	}	td,	th	{	padding:	0.5em	2em	0.5em	0.5em;	}	tbody	{	border-bottom:	none;	}	---	classoption	when	using	KaTeX,	you	can	render	display	math	equations	flush	left	using	YAML	metadata	or	with	-M	classoption=fleqn.	These	affect	HTML	output	when	producing	slide	shows	with	pandoc.	institute	author
affiliations:	can	be	a	list	when	there	are	multiple	authors	revealjs-url	base	URL	for	reveal.js	documents	(defaults	to	email	protected]^4/)	s5-url	base	URL	for	S5	documents	(defaults	to	s5/default)	slidy-url	base	URL	for	Slidy	documents	(defaults	to	slideous-url	base	URL	for	Slideous	documents	(defaults	to	slideous)	title-slide-attributes	additional
attributes	for	the	title	slide	of	reveal.js	slide	shows.	See	background	in	reveal.js,	beamer,	and	pptx	for	an	example.	All	reveal.js	configuration	options	are	available	as	variables.	To	turn	off	boolean	flags	that	default	to	true	in	reveal.js,	use	0.	These	variables	change	the	appearance	of	PDF	slides	using	beamer.	aspectratio	slide	aspect	ratio	(43	for	4:3
[default],	169	for	16:9,	1610	for	16:10,	149	for	14:9,	141	for	1.41:1,	54	for	5:4,	32	for	3:2)	beameroption	add	extra	beamer	option	with	\setbeameroption{}	institute	author	affiliations:	can	be	a	list	when	there	are	multiple	authors	logo	logo	image	for	slides	navigation	controls	navigation	symbols	(default	is	empty	for	no	navigation	symbols;	other	valid
values	are	frame,	vertical,	and	horizontal)	section-titles	enables	“title	pages”	for	new	sections	(default	is	true)	theme,	colortheme,	fonttheme,	innertheme,	outertheme	beamer	themes	themeoptions	options	for	LaTeX	beamer	themes	(a	list).	titlegraphic	image	for	title	slide	These	variables	control	the	visual	aspects	of	a	slide	show	that	are	not	easily
controlled	via	templates.	monofont	font	to	use	for	code.	Pandoc	uses	these	variables	when	creating	a	PDF	with	a	LaTeX	engine.	block-headings	make	\paragraph	and	\subparagraph	(fourth-	and	fifth-level	headings,	or	fifth-	and	sixth-level	with	book	classes)	free-standing	rather	than	run-in;	requires	further	formatting	to	distinguish	from	\subsubsection

(third-	or	fourth-level	headings).	Instead	of	using	this	option,	KOMA-Script	can	adjust	headings	more	extensively:	---	documentclass:	scrartcl	header-includes:	|	\RedeclareSectionCommand[beforeskip=-10pt	plus	-2pt	minus	-1pt,	afterskip=1sp	plus	-1sp	minus	1sp,	font=ormalfont\itshape]{paragraph}	\RedeclareSectionCommand[beforeskip=-10pt
plus	-2pt	minus	-1pt,	afterskip=1sp	plus	-1sp	minus	1sp,	font=ormalfont\scshape,	indent=0pt]{subparagraph}	...	classoption	option	for	document	class,	e.g.	oneside;	repeat	for	multiple	options:	---	classoption:	-	twocolumn	-	landscape	...	documentclass	document	class:	usually	one	of	the	standard	classes,	article,	book,	and	report;	the	KOMA-Script
equivalents,	scrartcl,	scrbook,	and	scrreprt,	which	default	to	smaller	margins;	or	memoir	geometry	option	for	geometry	package,	e.g.	margin=1in;	repeat	for	multiple	options:	---	geometry:	-	top=30mm	-	left=20mm	-	heightrounded	...	hyperrefoptions	option	for	hyperref	package,	e.g.	linktoc=all;	repeat	for	multiple	options:	---	hyperrefoptions:	-
linktoc=all	-	pdfwindowui	-	pdfpagemode=FullScreen	...	indent	if	true,	pandoc	will	use	document	class	settings	for	indentation	(the	default	LaTeX	template	otherwise	removes	indentation	and	adds	space	between	paragraphs)	linestretch	adjusts	line	spacing	using	the	setspace	package,	e.g.	1.25,	1.5	margin-left,	margin-right,	margin-top,	margin-bottom
sets	margins	if	geometry	is	not	used	(otherwise	geometry	overrides	these)	pagestyle	control	\pagestyle{}:	the	default	article	class	supports	plain	(default),	empty	(no	running	heads	or	page	numbers),	and	headings	(section	titles	in	running	heads)	papersize	paper	size,	e.g.	letter,	a4	secnumdepth	numbering	depth	for	sections	(with	--number-sections
option	or	numbersections	variable)	beamerarticle	produce	an	article	from	Beamer	slides	fontenc	allows	font	encoding	to	be	specified	through	fontenc	package	(with	pdflatex);	default	is	T1	(see	LaTeX	font	encodings	guide)	fontfamily	font	package	for	use	with	pdflatex:	TeX	Live	includes	many	options,	documented	in	the	LaTeX	Font	Catalogue.	The
default	is	Latin	Modern.	fontfamilyoptions	options	for	package	used	as	fontfamily;	repeat	for	multiple	options.	For	example,	to	use	the	Libertine	font	with	proportional	lowercase	(old-style)	figures	through	the	libertinus	package:	---	fontfamily:	libertinus	fontfamilyoptions:	-	osf	-	p	...	fontsize	font	size	for	body	text.	The	standard	classes	allow	10pt,	11pt,
and	12pt.	To	use	another	size,	set	documentclass	to	one	of	the	KOMA-Script	classes,	such	as	scrartcl	or	scrbook.	mainfont,	sansfont,	monofont,	mathfont,	CJKmainfont	font	families	for	use	with	xelatex	or	lualatex:	take	the	name	of	any	system	font,	using	the	fontspec	package.	CJKmainfont	uses	the	xecjk	package.	mainfontoptions,	sansfontoptions,
monofontoptions,	mathfontoptions,	CJKoptions	options	to	use	with	mainfont,	sansfont,	monofont,	mathfont,	CJKmainfont	in	xelatex	and	lualatex.	Allow	for	any	choices	available	through	fontspec;	repeat	for	multiple	options.	For	example,	to	use	the	TeX	Gyre	version	of	Palatino	with	lowercase	figures:	---	mainfont:	TeX	Gyre	Pagella	mainfontoptions:	-
Numbers=Lowercase	-	Numbers=Proportional	...	microtypeoptions	options	to	pass	to	the	microtype	package	colorlinks	add	color	to	link	text;	automatically	enabled	if	any	of	linkcolor,	filecolor,	citecolor,	urlcolor,	or	toccolor	are	set	boxlinks	add	visible	box	around	links	(has	no	effect	if	colorlinks	is	set)	linkcolor,	filecolor,	citecolor,	urlcolor,	toccolor
color	for	internal	links,	external	links,	citation	links,	linked	URLs,	and	links	in	table	of	contents,	respectively:	uses	options	allowed	by	xcolor,	including	the	dvipsnames,	svgnames,	and	x11names	lists	links-as-notes	causes	links	to	be	printed	as	footnotes	lof,	lot	include	list	of	figures,	list	of	tables	thanks	contents	of	acknowledgments	footnote	after
document	title	toc	include	table	of	contents	(can	also	be	set	using	--toc/--table-of-contents)	toc-depth	level	of	section	to	include	in	table	of	contents	These	variables	function	when	using	BibLaTeX	for	citation	rendering.	biblatexoptions	list	of	options	for	biblatex	biblio-style	bibliography	style,	when	used	with	--natbib	and	--biblatex	biblio-title	bibliography
title,	when	used	with	--natbib	and	--biblatex	bibliography	bibliography	to	use	for	resolving	references	natbiboptions	list	of	options	for	natbib	Pandoc	uses	these	variables	when	creating	a	PDF	with	ConTeXt.	fontsize	font	size	for	body	text	(e.g.	10pt,	12pt)	headertext,	footertext	text	to	be	placed	in	running	header	or	footer	(see	ConTeXt	Headers	and
Footers);	repeat	up	to	four	times	for	different	placement	indenting	controls	indentation	of	paragraphs,	e.g.	yes,small,next	(see	ConTeXt	Indentation);	repeat	for	multiple	options	interlinespace	adjusts	line	spacing,	e.g.	4ex	(using	setupinterlinespace);	repeat	for	multiple	options	layout	options	for	page	margins	and	text	arrangement	(see	ConTeXt
Layout);	repeat	for	multiple	options	linkcolor,	contrastcolor	color	for	links	outside	and	inside	a	page,	e.g.	red,	blue	(see	ConTeXt	Color)	linkstyle	typeface	style	for	links,	e.g.	normal,	bold,	slanted,	boldslanted,	type,	cap,	small	lof,	lot	include	list	of	figures,	list	of	tables	mainfont,	sansfont,	monofont,	mathfont	font	families:	take	the	name	of	any	system
font	(see	ConTeXt	Font	Switching)	margin-left,	margin-right,	margin-top,	margin-bottom	sets	margins,	if	layout	is	not	used	(otherwise	layout	overrides	these)	pagenumbering	page	number	style	and	location	(using	setuppagenumbering);	repeat	for	multiple	options	papersize	paper	size,	e.g.	letter,	A4,	landscape	(see	ConTeXt	Paper	Setup);	repeat	for
multiple	options	pdfa	adds	to	the	preamble	the	setup	necessary	to	generate	PDF/A	of	the	type	specified,	e.g.	1a:2005,	2a.	If	no	type	is	specified	(i.e.	the	value	is	set	to	True,	by	e.g.	--metadata=pdfa	or	pdfa:	true	in	a	YAML	metadata	block),	1b:2005	will	be	used	as	default,	for	reasons	of	backwards	compatibility.	Using	--variable=pdfa	without	specified
value	is	not	supported.	To	successfully	generate	PDF/A	the	required	ICC	color	profiles	have	to	be	available	and	the	content	and	all	included	files	(such	as	images)	have	to	be	standard-conforming.	The	ICC	profiles	and	output	intent	may	be	specified	using	the	variables	pdfaiccprofile	and	pdfaintent.	See	also	ConTeXt	PDFA	for	more	details.
pdfaiccprofile	when	used	in	conjunction	with	pdfa,	specifies	the	ICC	profile	to	use	in	the	PDF,	e.g.	default.cmyk.	If	left	unspecified,	sRGB.icc	is	used	as	default.	May	be	repeated	to	include	multiple	profiles.	Note	that	the	profiles	have	to	be	available	on	the	system.	They	can	be	obtained	from	ConTeXt	ICC	Profiles.	pdfaintent	when	used	in	conjunction
with	pdfa,	specifies	the	output	intent	for	the	colors,	e.g.	ISO	coated	v2	300\letterpercent\space	(ECI)	If	left	unspecified,	sRGB	IEC61966-2.1	is	used	as	default.	toc	include	table	of	contents	(can	also	be	set	using	--toc/--table-of-contents)	whitespace	spacing	between	paragraphs,	e.g.	none,	small	(using	setupwhitespace)	includesource	include	all	source
documents	as	file	attachments	in	the	PDF	file	Pandoc	uses	these	variables	when	creating	a	PDF	with	wkhtmltopdf.	The	--css	option	also	affects	the	output.	footer-html,	header-html	add	information	to	the	header	and	footer	margin-left,	margin-right,	margin-top,	margin-bottom	set	the	page	margins	papersize	sets	the	PDF	paper	size	adjusting	adjusts
text	to	left	(l),	right	(r),	center	(c),	or	both	(b)	margins	footer	footer	in	man	pages	header	header	in	man	pages	hyphenate	if	true	(the	default),	hyphenation	will	be	used	section	section	number	in	man	pages	fontfamily	font	family	(e.g.	T	or	P)	indent	paragraph	indent	(e.g.	2m)	lineheight	line	height	(e.g.	12p)	pointsize	point	size	(e.g.	10p)	Pandoc	sets
these	variables	automatically	in	response	to	options	or	document	contents;	users	can	also	modify	them.	These	vary	depending	on	the	output	format,	and	include	the	following:	body	body	of	document	date-meta	the	date	variable	converted	to	ISO	8601	YYYY-MM-DD,	included	in	all	HTML	based	formats	(dzslides,	epub,	html,	html4,	html5,	revealjs,	s5,
slideous,	slidy).	The	recognized	formats	for	date	are:	mm/dd/yyyy,	mm/dd/yy,	yyyy-mm-dd	(ISO	8601),	dd	MM	yyyy	(e.g.	either	02	Apr	2018	or	02	April	2018),	MM	dd,	yyyy	(e.g.	Apr.	02,	2018	or	April	02,	2018),yyyy[mm[dd]](e.g.20180402,	201804	or	2018).	header-includes	contents	specified	by	-H/--include-in-header	(may	have	multiple	values)
include-before	contents	specified	by	-B/--include-before-body	(may	have	multiple	values)	include-after	contents	specified	by	-A/--include-after-body	(may	have	multiple	values)	meta-json	JSON	representation	of	all	of	the	document’s	metadata.	Field	values	are	transformed	to	the	selected	output	format.	numbersections	non-null	value	if	-N/--number-
sections	was	specified	sourcefile,	outputfile	source	and	destination	filenames,	as	given	on	the	command	line.	sourcefile	can	also	be	a	list	if	input	comes	from	multiple	files,	or	empty	if	input	is	from	stdin.	You	can	use	the	following	snippet	in	your	template	to	distinguish	them:	$if(sourcefile)$	$for(sourcefile)$	$sourcefile$	$endfor$	$else$	(stdin)	$endif$
Similarly,	outputfile	can	be	-	if	output	goes	to	the	terminal.	If	you	need	absolute	paths,	use	e.g.	$curdir$/$sourcefile$.	curdir	working	directory	from	which	pandoc	is	run.	toc	non-null	value	if	--toc/--table-of-contents	was	specified	toc-title	title	of	table	of	contents	(works	only	with	EPUB,	HTML,	revealjs,	opendocument,	odt,	docx,	pptx,	beamer,	LaTeX)
The	behavior	of	some	of	the	readers	and	writers	can	be	adjusted	by	enabling	or	disabling	various	extensions.	An	extension	can	be	enabled	by	adding	+EXTENSION	to	the	format	name	and	disabled	by	adding	-EXTENSION.	For	example,	--from	markdown_strict+footnotes	is	strict	Markdown	with	footnotes	enabled,	while	--from	markdown-footnotes-
pipe_tables	is	pandoc’s	Markdown	without	footnotes	or	pipe	tables.	The	markdown	reader	and	writer	make	by	far	the	most	use	of	extensions.	Extensions	only	used	by	them	are	therefore	covered	in	the	section	Pandoc’s	Markdown	below	(see	Markdown	variants	for	commonmark	and	gfm).	In	the	following,	extensions	that	also	work	for	other	formats
are	covered.	Note	that	markdown	extensions	added	to	the	ipynb	format	affect	Markdown	cells	in	Jupyter	notebooks	(as	do	command-line	options	like	--atx-headers).	Interpret	straight	quotes	as	curly	quotes,	---	as	em-dashes,	--	as	en-dashes,	and	...	as	ellipses.	Nonbreaking	spaces	are	inserted	after	certain	abbreviations,	such	as	“Mr.”	This	extension	can
be	enabled/disabled	for	the	following	formats:	input	formats	markdown,	commonmark,	latex,	mediawiki,	org,	rst,	twiki,	html	output	formats	markdown,	latex,	context,	rst	enabled	by	default	in	markdown,	latex,	context	(both	input	and	output)	Note:	If	you	are	writing	Markdown,	then	the	smart	extension	has	the	reverse	effect:	what	would	have	been
curly	quotes	comes	out	straight.	In	LaTeX,	smart	means	to	use	the	standard	TeX	ligatures	for	quotation	marks	(``	and	''	for	double	quotes,	`	and	'	for	single	quotes)	and	dashes	(--	for	en-dash	and	---	for	em-dash).	If	smart	is	disabled,	then	in	reading	LaTeX	pandoc	will	parse	these	characters	literally.	In	writing	LaTeX,	enabling	smart	tells	pandoc	to	use
the	ligatures	when	possible;	if	smart	is	disabled	pandoc	will	use	unicode	quotation	mark	and	dash	characters.	A	heading	without	an	explicitly	specified	identifier	will	be	automatically	assigned	a	unique	identifier	based	on	the	heading	text.	This	extension	can	be	enabled/disabled	for	the	following	formats:	input	formats	markdown,	latex,	rst,	mediawiki,
textile	output	formats	markdown,	muse	enabled	by	default	in	markdown,	muse	The	default	algorithm	used	to	derive	the	identifier	from	the	heading	text	is:	Remove	all	formatting,	links,	etc.	Remove	all	footnotes.	Remove	all	non-alphanumeric	characters,	except	underscores,	hyphens,	and	periods.	Replace	all	spaces	and	newlines	with	hyphens.	Convert
all	alphabetic	characters	to	lowercase.	Remove	everything	up	to	the	first	letter	(identifiers	may	not	begin	with	a	number	or	punctuation	mark).	If	nothing	is	left	after	this,	use	the	identifier	section.	Thus,	for	example,	Heading	identifiers	in	HTML	heading-identifiers-in-html	Maître	d'hôtel	maître-dhôtel	*Dogs*?--in	*my*	house?	dogs--in-my-house
[HTML],	[S5],	or	[RTF]?	html-s5-or-rtf	3.	Applications	applications	33	section	These	rules	should,	in	most	cases,	allow	one	to	determine	the	identifier	from	the	heading	text.	The	exception	is	when	several	headings	have	the	same	text;	in	this	case,	the	first	will	get	an	identifier	as	described	above;	the	second	will	get	the	same	identifier	with	-1	appended;
the	third	with	-2;	and	so	on.	(However,	a	different	algorithm	is	used	if	gfm_auto_identifiers	is	enabled;	see	below.)	These	identifiers	are	used	to	provide	link	targets	in	the	table	of	contents	generated	by	the	--toc|--table-of-contents	option.	They	also	make	it	easy	to	provide	links	from	one	section	of	a	document	to	another.	A	link	to	this	section,	for
example,	might	look	like	this:	See	the	section	on	[heading	identifiers](#heading-identifiers-in-html-latex-and-context).	Note,	however,	that	this	method	of	providing	links	to	sections	works	only	in	HTML,	LaTeX,	and	ConTeXt	formats.	If	the	--section-divs	option	is	specified,	then	each	section	will	be	wrapped	in	a	section	(or	a	div,	if	html4	was	specified),
and	the	identifier	will	be	attached	to	the	enclosing	(or)	tag	rather	than	the	heading	itself.	This	allows	entire	sections	to	be	manipulated	using	JavaScript	or	treated	differently	in	CSS.	Causes	the	identifiers	produced	by	auto_identifiers	to	be	pure	ASCII.	Accents	are	stripped	off	of	accented	Latin	letters,	and	non-Latin	letters	are	omitted.	Changes	the
algorithm	used	by	auto_identifiers	to	conform	to	GitHub’s	method.	Spaces	are	converted	to	dashes	(-),	uppercase	characters	to	lowercase	characters,	and	punctuation	characters	other	than	-	and	_	are	removed.	Emojis	are	replaced	by	their	names.	The	extensions	tex_math_dollars,	tex_math_single_backslash,	and	tex_math_double_backslash	are
described	in	the	section	about	Pandoc’s	Markdown.	However,	they	can	also	be	used	with	HTML	input.	This	is	handy	for	reading	web	pages	formatted	using	MathJax,	for	example.	The	following	extensions	are	described	in	more	detail	in	their	respective	sections	of	Pandoc’s	Markdown:	raw_html	allows	HTML	elements	which	are	not	representable	in
pandoc’s	AST	to	be	parsed	as	raw	HTML.	By	default,	this	is	disabled	for	HTML	input.	raw_tex	allows	raw	LaTeX,	TeX,	and	ConTeXt	to	be	included	in	a	document.	This	extension	can	be	enabled/disabled	for	the	following	formats	(in	addition	to	markdown):	input	formats	latex,	textile,	html	(environments,	\ref,	and	\eqref	only),	ipynb	output	formats
textile,	commonmark	Note:	as	applied	to	ipynb,	raw_html	and	raw_tex	affect	not	only	raw	TeX	in	markdown	cells,	but	data	with	mime	type	text/html	in	output	cells.	Since	the	ipynb	reader	attempts	to	preserve	the	richest	possible	outputs	when	several	options	are	given,	you	will	get	best	results	if	you	disable	raw_html	and	raw_tex	when	converting	to
formats	like	docx	which	don’t	allow	raw	html	or	tex.	native_divs	causes	HTML	div	elements	to	be	parsed	as	native	pandoc	Div	blocks.	If	you	want	them	to	be	parsed	as	raw	HTML,	use	-f	html-native_divs+raw_html.	native_spans	causes	HTML	span	elements	to	be	parsed	as	native	pandoc	Span	inlines.	If	you	want	them	to	be	parsed	as	raw	HTML,	use	-f
html-native_spans+raw_html.	If	you	want	to	drop	all	divs	and	spans	when	converting	HTML	to	Markdown,	you	can	use	pandoc	-f	html-native_divs-native_spans	-t	markdown.	Treat	the	document	as	literate	Haskell	source.	This	extension	can	be	enabled/disabled	for	the	following	formats:	input	formats	markdown,	rst,	latex	output	formats	markdown,	rst,
latex,	html	If	you	append	+lhs	(or	+literate_haskell)	to	one	of	the	formats	above,	pandoc	will	treat	the	document	as	literate	Haskell	source.	This	means	that	In	Markdown	input,	“bird	track”	sections	will	be	parsed	as	Haskell	code	rather	than	block	quotations.	Text	between	\begin{code}	and	\end{code}	will	also	be	treated	as	Haskell	code.	For	ATX-
style	headings	the	character	‘=’	will	be	used	instead	of	‘#’.	In	Markdown	output,	code	blocks	with	classes	haskell	and	literate	will	be	rendered	using	bird	tracks,	and	block	quotations	will	be	indented	one	space,	so	they	will	not	be	treated	as	Haskell	code.	In	addition,	headings	will	be	rendered	setext-style	(with	underlines)	rather	than	ATX-style	(with
‘#’	characters).	(This	is	because	ghc	treats	‘#’	characters	in	column	1	as	introducing	line	numbers.)	In	restructured	text	input,	“bird	track”	sections	will	be	parsed	as	Haskell	code.	In	restructured	text	output,	code	blocks	with	class	haskell	will	be	rendered	using	bird	tracks.	In	LaTeX	input,	text	in	code	environments	will	be	parsed	as	Haskell	code.	In
LaTeX	output,	code	blocks	with	class	haskell	will	be	rendered	inside	code	environments.	In	HTML	output,	code	blocks	with	class	haskell	will	be	rendered	with	class	literatehaskell	and	bird	tracks.	Examples:	pandoc	-f	markdown+lhs	-t	html	reads	literate	Haskell	source	formatted	with	Markdown	conventions	and	writes	ordinary	HTML	(without	bird
tracks).	pandoc	-f	markdown+lhs	-t	html+lhs	writes	HTML	with	the	Haskell	code	in	bird	tracks,	so	it	can	be	copied	and	pasted	as	literate	Haskell	source.	Note	that	GHC	expects	the	bird	tracks	in	the	first	column,	so	indented	literate	code	blocks	(e.g.	inside	an	itemized	environment)	will	not	be	picked	up	by	the	Haskell	compiler.	Allows	empty
paragraphs.	By	default	empty	paragraphs	are	omitted.	This	extension	can	be	enabled/disabled	for	the	following	formats:	input	formats	docx,	html	output	formats	docx,	odt,	opendocument,	html	Enables	native	numbering	of	figures	and	tables.	Enumeration	starts	at	1.	This	extension	can	be	enabled/disabled	for	the	following	formats:	output	formats	odt,
opendocument,	docx	Links	to	headings,	figures	and	tables	inside	the	document	are	substituted	with	cross-references	that	will	use	the	name	or	caption	of	the	referenced	item.	The	original	link	text	is	replaced	once	the	generated	document	is	refreshed.	This	extension	can	be	combined	with	xrefs_number	in	which	case	numbers	will	appear	before	the
name.	Text	in	cross-references	is	only	made	consistent	with	the	referenced	item	once	the	document	has	been	refreshed.	This	extension	can	be	enabled/disabled	for	the	following	formats:	output	formats	odt,	opendocument	Links	to	headings,	figures	and	tables	inside	the	document	are	substituted	with	cross-references	that	will	use	the	number	of	the
referenced	item.	The	original	link	text	is	discarded.	This	extension	can	be	combined	with	xrefs_name	in	which	case	the	name	or	caption	numbers	will	appear	after	the	number.	For	the	xrefs_number	to	be	useful	heading	numbers	must	be	enabled	in	the	generated	document,	also	table	and	figure	captions	must	be	enabled	using	for	example	the
native_numbering	extension.	Numbers	in	cross-references	are	only	visible	in	the	final	document	once	it	has	been	refreshed.	This	extension	can	be	enabled/disabled	for	the	following	formats:	output	formats	odt,	opendocument	When	converting	from	docx,	read	all	docx	styles	as	divs	(for	paragraph	styles)	and	spans	(for	character	styles)	regardless	of
whether	pandoc	understands	the	meaning	of	these	styles.	This	can	be	used	with	docx	custom	styles.	Disabled	by	default.	input	formats	docx	In	the	muse	input	format,	this	enables	Text::Amuse	extensions	to	Emacs	Muse	markup.	In	the	ipynb	input	format,	this	causes	Markdown	cells	to	be	included	as	raw	Markdown	blocks	(allowing	lossless	round-
tripping)	rather	than	being	parsed.	Use	this	only	when	you	are	targeting	ipynb	or	a	markdown-based	output	format.	When	the	citations	extension	is	enabled	in	org,	org-cite	and	org-ref	style	citations	will	be	parsed	as	native	pandoc	citations.	When	citations	is	enabled	in	docx,	citations	inserted	by	Zotero	or	Mendeley	or	EndNote	plugins	will	be	parsed
as	native	pandoc	citations.	(Otherwise,	the	formatted	citations	generated	by	the	bibliographic	software	will	be	parsed	as	regular	text.)	Some	aspects	of	Pandoc’s	Markdown	fancy	lists	are	also	accepted	in	org	input,	mimicking	the	option	org-list-allow-alphabetical	in	Emacs.	As	in	Org	Mode,	enabling	this	extension	allows	lowercase	and	uppercase
alphabetical	markers	for	ordered	lists	to	be	parsed	in	addition	to	arabic	ones.	Note	that	for	Org,	this	does	not	include	roman	numerals	or	the	#	placeholder	that	are	enabled	by	the	extension	in	Pandoc’s	Markdown.	In	the	jats	output	formats,	this	causes	reference	items	to	be	replaced	with	elements.	These	elements	are	not	influenced	by	CSL	styles,	but
all	information	on	the	item	is	included	in	tags.	In	the	context	output	format	this	enables	the	use	of	Natural	Tables	(TABLE)	instead	of	the	default	Extreme	Tables	(xtables).	Natural	tables	allow	more	fine-grained	global	customization	but	come	at	a	performance	penalty	compared	to	extreme	tables.	Pandoc	understands	an	extended	and	slightly	revised
version	of	John	Gruber’s	Markdown	syntax.	This	document	explains	the	syntax,	noting	differences	from	original	Markdown.	Except	where	noted,	these	differences	can	be	suppressed	by	using	the	markdown_strict	format	instead	of	markdown.	Extensions	can	be	enabled	or	disabled	to	specify	the	behavior	more	granularly.	They	are	described	in	the
following.	See	also	Extensions	above,	for	extensions	that	work	also	on	other	formats.	Markdown	is	designed	to	be	easy	to	write,	and,	even	more	importantly,	easy	to	read:	A	Markdown-formatted	document	should	be	publishable	as-is,	as	plain	text,	without	looking	like	it’s	been	marked	up	with	tags	or	formatting	instructions.	–	John	Gruber	This
principle	has	guided	pandoc’s	decisions	in	finding	syntax	for	tables,	footnotes,	and	other	extensions.	There	is,	however,	one	respect	in	which	pandoc’s	aims	are	different	from	the	original	aims	of	Markdown.	Whereas	Markdown	was	originally	designed	with	HTML	generation	in	mind,	pandoc	is	designed	for	multiple	output	formats.	Thus,	while	pandoc
allows	the	embedding	of	raw	HTML,	it	discourages	it,	and	provides	other,	non-HTMLish	ways	of	representing	important	document	elements	like	definition	lists,	tables,	mathematics,	and	footnotes.	A	paragraph	is	one	or	more	lines	of	text	followed	by	one	or	more	blank	lines.	Newlines	are	treated	as	spaces,	so	you	can	reflow	your	paragraphs	as	you
like.	If	you	need	a	hard	line	break,	put	two	or	more	spaces	at	the	end	of	a	line.	A	backslash	followed	by	a	newline	is	also	a	hard	line	break.	Note:	in	multiline	and	grid	table	cells,	this	is	the	only	way	to	create	a	hard	line	break,	since	trailing	spaces	in	the	cells	are	ignored.	There	are	two	kinds	of	headings:	Setext	and	ATX.	A	setext-style	heading	is	a	line
of	text	“underlined”	with	a	row	of	=	signs	(for	a	level-one	heading)	or	-	signs	(for	a	level-two	heading):	A	level-one	heading	===================	A	level-two	heading	-------------------	The	heading	text	can	contain	inline	formatting,	such	as	emphasis	(see	Inline	formatting,	below).	An	ATX-style	heading	consists	of	one	to	six	#	signs	and	a	line	of
text,	optionally	followed	by	any	number	of	#	signs.	The	number	of	#	signs	at	the	beginning	of	the	line	is	the	heading	level:	##	A	level-two	heading	###	A	level-three	heading	###	As	with	setext-style	headings,	the	heading	text	can	contain	formatting:	#	A	level-one	heading	with	a	[link](/url)	and	*emphasis*	See	also	the	auto_identifiers	extension
above.	Markdown	uses	email	conventions	for	quoting	blocks	of	text.	A	block	quotation	is	one	or	more	paragraphs	or	other	block	elements	(such	as	lists	or	headings),	with	each	line	preceded	by	a	>	character	and	an	optional	space.	(The	>	need	not	start	at	the	left	margin,	but	it	should	not	be	indented	more	than	three	spaces.)	>	This	is	a	block	quote.
This	>	paragraph	has	two	lines.	>	>	1.	This	is	a	list	inside	a	block	quote.	>	2.	Second	item.	A	“lazy”	form,	which	requires	the	>	character	only	on	the	first	line	of	each	block,	is	also	allowed:	>	This	is	a	block	quote.	This	paragraph	has	two	lines.	>	1.	This	is	a	list	inside	a	block	quote.	2.	Second	item.	Among	the	block	elements	that	can	be	contained	in	a
block	quote	are	other	block	quotes.	That	is,	block	quotes	can	be	nested:	>	This	is	a	block	quote.	>	>	>	A	block	quote	within	a	block	quote.	If	the	>	character	is	followed	by	an	optional	space,	that	space	will	be	considered	part	of	the	block	quote	marker	and	not	part	of	the	indentation	of	the	contents.	Thus,	to	put	an	indented	code	block	in	a	block	quote,
you	need	five	spaces	after	the	>:	>	code	Original	Markdown	syntax	does	not	require	a	blank	line	before	a	block	quote.	Pandoc	does	require	this	(except,	of	course,	at	the	beginning	of	the	document).	The	reason	for	the	requirement	is	that	it	is	all	too	easy	for	a	>	to	end	up	at	the	beginning	of	a	line	by	accident	(perhaps	through	line	wrapping).	So,
unless	the	markdown_strict	format	is	used,	the	following	does	not	produce	a	nested	block	quote	in	pandoc:	>	This	is	a	block	quote.	>>	Nested.	A	block	of	text	indented	four	spaces	(or	one	tab)	is	treated	as	verbatim	text:	that	is,	special	characters	do	not	trigger	special	formatting,	and	all	spaces	and	line	breaks	are	preserved.	For	example,	if	(a	>	3)	{
moveShip(5	*	gravity,	DOWN);	}	The	initial	(four	space	or	one	tab)	indentation	is	not	considered	part	of	the	verbatim	text,	and	is	removed	in	the	output.	Note:	blank	lines	in	the	verbatim	text	need	not	begin	with	four	spaces.	In	addition	to	standard	indented	code	blocks,	pandoc	supports	fenced	code	blocks.	These	begin	with	a	row	of	three	or	more
tildes	(~)	and	end	with	a	row	of	tildes	that	must	be	at	least	as	long	as	the	starting	row.	Everything	between	these	lines	is	treated	as	code.	No	indentation	is	necessary:	~~~~~~~	if	(a	>	3)	{	moveShip(5	*	gravity,	DOWN);	}	~~~~~~~	Like	regular	code	blocks,	fenced	code	blocks	must	be	separated	from	surrounding	text	by	blank	lines.	If	the	code
itself	contains	a	row	of	tildes	or	backticks,	just	use	a	longer	row	of	tildes	or	backticks	at	the	start	and	end:	~~~~~~~~~~~~~~~~	~~~~~~~~~~	code	including	tildes	~~~~~~~~~~	~~~~~~~~~~~~~~~~	Same	as	fenced_code_blocks,	but	uses	backticks	(`)	instead	of	tildes	(~).	Optionally,	you	may	attach	attributes	to	fenced	or	backtick
code	block	using	this	syntax:	~~~~	{#mycode	.haskell	.numberLines	startFrom="100"}	qsort	[]	=	[]	qsort	(x:xs)	=	qsort	(filter	(<	x)	xs)	++	[x]	++	qsort	(filter	(>=	x)	xs)	~~~	Here	mycode	is	an	identifier,	haskell	and	numberLines	are	classes,	and	startFrom	is	an	attribute
with	value	100.	Some	output	formats	can	use	this	information	to	do	syntax	highlighting.	Currently,	the	only	output	formats	that	use	this	information	are	HTML,	LaTeX,	Docx,	Ms,	and	PowerPoint.	If	highlighting	is	supported	for	your	output	format	and	language,	then	the	code	block	above	will	appear	highlighted,	with	numbered	lines.	(To	see	which
languages	are	supported,	type	pandoc	--list-highlight-languages.)	Otherwise,	the	code	block	above	will	appear	as	follows:	...	The	numberLines	(or	number-lines)	class	will	cause	the	lines	of	the	code	block	to	be	numbered,	starting	with	1	or	the	value	of	the	startFrom	attribute.	The	lineAnchors	(or	line-anchors)	class	will	cause	the	lines	to	be	clickable
anchors	in	HTML	output.	A	shortcut	form	can	also	be	used	for	specifying	the	language	of	the	code	block:	```haskell	qsort	[]	=	[]	```	This	is	equivalent	to:	```	{.haskell}	qsort	[]	=	[]	```	If	the	fenced_code_attributes	extension	is	disabled,	but	input	contains	class	attribute(s)	for	the	code	block,	the	first	class	attribute	will	be	printed	after	the	opening
fence	as	a	bare	word.	To	prevent	all	highlighting,	use	the	--no-highlight	flag.	To	set	the	highlighting	style,	use	--highlight-style.	For	more	information	on	highlighting,	see	Syntax	highlighting,	below.	A	line	block	is	a	sequence	of	lines	beginning	with	a	vertical	bar	(|)	followed	by	a	space.	The	division	into	lines	will	be	preserved	in	the	output,	as	will	any
leading	spaces;	otherwise,	the	lines	will	be	formatted	as	Markdown.	This	is	useful	for	verse	and	addresses:	|	The	limerick	packs	laughs	anatomical	|	In	space	that	is	quite	economical.	|	But	the	good	ones	I've	seen	|	So	seldom	are	clean	|	And	the	clean	ones	so	seldom	are	comical	|	200	Main	St.	|	Berkeley,	CA	94718	The	lines	can	be	hard-wrapped	if
needed,	but	the	continuation	line	must	begin	with	a	space.	|	The	Right	Honorable	Most	Venerable	and	Righteous	Samuel	L.	Constable,	Jr.	|	200	Main	St.	|	Berkeley,	CA	94718	Inline	formatting	(such	as	emphasis)	is	allowed	in	the	content,	but	not	block-level	formatting	(such	as	block	quotes	or	lists).	This	syntax	is	borrowed	from	reStructuredText.	A
bullet	list	is	a	list	of	bulleted	list	items.	A	bulleted	list	item	begins	with	a	bullet	(*,	+,	or	-).	Here	is	a	simple	example:	*	one	*	two	*	three	This	will	produce	a	“compact”	list.	If	you	want	a	“loose”	list,	in	which	each	item	is	formatted	as	a	paragraph,	put	spaces	between	the	items:	*	one	*	two	*	three	The	bullets	need	not	be	flush	with	the	left	margin;	they
may	be	indented	one,	two,	or	three	spaces.	The	bullet	must	be	followed	by	whitespace.	List	items	look	best	if	subsequent	lines	are	flush	with	the	first	line	(after	the	bullet):	*	here	is	my	first	list	item.	*	and	my	second.	But	Markdown	also	allows	a	“lazy”	format:	*	here	is	my	first	list	item.	*	and	my	second.	A	list	item	may	contain	multiple	paragraphs	and
other	block-level	content.	However,	subsequent	paragraphs	must	be	preceded	by	a	blank	line	and	indented	to	line	up	with	the	first	non-space	content	after	the	list	marker.	*	First	paragraph.	Continued.	*	Second	paragraph.	With	a	code	block,	which	must	be	indented	eight	spaces:	{	code	}	Exception:	if	the	list	marker	is	followed	by	an	indented	code
block,	which	must	begin	5	spaces	after	the	list	marker,	then	subsequent	paragraphs	must	begin	two	columns	after	the	last	character	of	the	list	marker:	*	code	continuation	paragraph	List	items	may	include	other	lists.	In	this	case	the	preceding	blank	line	is	optional.	The	nested	list	must	be	indented	to	line	up	with	the	first	non-space	character	after	the
list	marker	of	the	containing	list	item.	*	fruits	+	apples	-	macintosh	-	red	delicious	+	pears	+	peaches	*	vegetables	+	broccoli	+	chard	As	noted	above,	Markdown	allows	you	to	write	list	items	“lazily,”	instead	of	indenting	continuation	lines.	However,	if	there	are	multiple	paragraphs	or	other	blocks	in	a	list	item,	the	first	line	of	each	must	be	indented.	+
A	lazy,	lazy,	list	item.	+	Another	one;	this	looks	bad	but	is	legal.	Second	paragraph	of	second	list	item.	Ordered	lists	work	just	like	bulleted	lists,	except	that	the	items	begin	with	enumerators	rather	than	bullets.	In	original	Markdown,	enumerators	are	decimal	numbers	followed	by	a	period	and	a	space.	The	numbers	themselves	are	ignored,	so	there	is
no	difference	between	this	list:	1.	one	2.	two	3.	three	and	this	one:	5.	one	7.	two	1.	three	Unlike	original	Markdown,	pandoc	allows	ordered	list	items	to	be	marked	with	uppercase	and	lowercase	letters	and	roman	numerals,	in	addition	to	Arabic	numerals.	List	markers	may	be	enclosed	in	parentheses	or	followed	by	a	single	right-parenthesis	or	period.
They	must	be	separated	from	the	text	that	follows	by	at	least	one	space,	and,	if	the	list	marker	is	a	capital	letter	with	a	period,	by	at	least	two	spaces.1	The	fancy_lists	extension	also	allows	‘#’	to	be	used	as	an	ordered	list	marker	in	place	of	a	numeral:	#.	one	#.	two	Pandoc	also	pays	attention	to	the	type	of	list	marker	used,	and	to	the	starting	number,
and	both	of	these	are	preserved	where	possible	in	the	output	format.	Thus,	the	following	yields	a	list	with	numbers	followed	by	a	single	parenthesis,	starting	with	9,	and	a	sublist	with	lowercase	roman	numerals:	9)	Ninth	10)	Tenth	11)	Eleventh	i.	subone	ii.	subtwo	iii.	subthree	Pandoc	will	start	a	new	list	each	time	a	different	type	of	list	marker	is	used.
So,	the	following	will	create	three	lists:	(2)	Two	(5)	Three	1.	Four	*	Five	If	default	list	markers	are	desired,	use	#.:	#.	one	#.	two	#.	three	Pandoc	supports	task	lists,	using	the	syntax	of	GitHub-Flavored	Markdown.	-	[]	an	unchecked	task	list	item	-	[x]	checked	item	Pandoc	supports	definition	lists,	using	the	syntax	of	PHP	Markdown	Extra	with	some
extensions.2	Term	1	:	Definition	1	Term	2	with	*inline	markup*	:	Definition	2	{	some	code,	part	of	Definition	2	}	Third	paragraph	of	definition	2.	Each	term	must	fit	on	one	line,	which	may	optionally	be	followed	by	a	blank	line,	and	must	be	followed	by	one	or	more	definitions.	A	definition	begins	with	a	colon	or	tilde,	which	may	be	indented	one	or	two
spaces.	A	term	may	have	multiple	definitions,	and	each	definition	may	consist	of	one	or	more	block	elements	(paragraph,	code	block,	list,	etc.),	each	indented	four	spaces	or	one	tab	stop.	The	body	of	the	definition	(not	including	the	first	line)	should	be	indented	four	spaces.	However,	as	with	other	Markdown	lists,	you	can	“lazily”	omit	indentation
except	at	the	beginning	of	a	paragraph	or	other	block	element:	Term	1	:	Definition	with	lazy	continuation.	Second	paragraph	of	the	definition.	If	you	leave	space	before	the	definition	(as	in	the	example	above),	the	text	of	the	definition	will	be	treated	as	a	paragraph.	In	some	output	formats,	this	will	mean	greater	spacing	between	term/definition	pairs.
For	a	more	compact	definition	list,	omit	the	space	before	the	definition:	Term	1	~	Definition	1	Term	2	~	Definition	2a	~	Definition	2b	Note	that	space	between	items	in	a	definition	list	is	required.	(A	variant	that	loosens	this	requirement,	but	disallows	“lazy”	hard	wrapping,	can	be	activated	with	compact_definition_lists:	see	Non-default	extensions,
below.)	The	special	list	marker	@	can	be	used	for	sequentially	numbered	examples.	The	first	list	item	with	a	@	marker	will	be	numbered	‘1’,	the	next	‘2’,	and	so	on,	throughout	the	document.	The	numbered	examples	need	not	occur	in	a	single	list;	each	new	list	using	@	will	take	up	where	the	last	stopped.	So,	for	example:	(@)	My	first	example	will	be
numbered	(1).	(@)	My	second	example	will	be	numbered	(2).	Explanation	of	examples.	(@)	My	third	example	will	be	numbered	(3).	Numbered	examples	can	be	labeled	and	referred	to	elsewhere	in	the	document:	(@good)	This	is	a	good	example.	As	(@good)	illustrates,	...	The	label	can	be	any	string	of	alphanumeric	characters,	underscores,	or	hyphens.
Note:	continuation	paragraphs	in	example	lists	must	always	be	indented	four	spaces,	regardless	of	the	length	of	the	list	marker.	That	is,	example	lists	always	behave	as	if	the	four_space_rule	extension	is	set.	This	is	because	example	labels	tend	to	be	long,	and	indenting	content	to	the	first	non-space	character	after	the	label	would	be	awkward.	What	if
you	want	to	put	an	indented	code	block	after	a	list?	-	item	one	-	item	two	{	my	code	block	}	Trouble!	Here	pandoc	(like	other	Markdown	implementations)	will	treat	{	my	code	block	}	as	the	second	paragraph	of	item	two,	and	not	as	a	code	block.	To	“cut	off”	the	list	after	item	two,	you	can	insert	some	non-indented	content,	like	an	HTML	comment,
which	won’t	produce	visible	output	in	any	format:	-	item	one	-	item	two	{	my	code	block	}	You	can	use	the	same	trick	if	you	want	two	consecutive	lists	instead	of	one	big	list:	1.	one	2.	two	3.	three	1.	uno	2.	dos	3.	tres	A	line	containing	a	row	of	three	or	more	*,	-,	or	_	characters	(optionally	separated	by	spaces)	produces	a	horizontal	rule:	*	*	*	*	--------------
-	We	strongly	recommend	that	horizontal	rules	be	separated	from	surrounding	text	by	blank	lines.	If	a	horizontal	rule	is	not	followed	by	a	blank	line,	pandoc	may	try	to	interpret	the	lines	that	follow	as	a	YAML	metadata	block	or	a	table.	Four	kinds	of	tables	may	be	used.	The	first	three	kinds	presuppose	the	use	of	a	fixed-width	font,	such	as	Courier.
The	fourth	kind	can	be	used	with	proportionally	spaced	fonts,	as	it	does	not	require	lining	up	columns.	A	caption	may	optionally	be	provided	with	all	4	kinds	of	tables	(as	illustrated	in	the	examples	below).	A	caption	is	a	paragraph	beginning	with	the	string	Table:	(or	just	:),	which	will	be	stripped	off.	It	may	appear	either	before	or	after	the	table.
Simple	tables	look	like	this:	Right	Left	Center	Default	-------	------	----------	-------	12	12	12	12	123	123	123	123	1	1	1	1	Table:	Demonstration	of	simple	table	syntax.	The	header	and	table	rows	must	each	fit	on	one	line.	Column	alignments	are	determined	by	the	position	of	the	header	text	relative	to	the	dashed	line	below	it:3	If	the	dashed	line	is	flush	with
the	header	text	on	the	right	side	but	extends	beyond	it	on	the	left,	the	column	is	right-aligned.	If	the	dashed	line	is	flush	with	the	header	text	on	the	left	side	but	extends	beyond	it	on	the	right,	the	column	is	left-aligned.	If	the	dashed	line	extends	beyond	the	header	text	on	both	sides,	the	column	is	centered.	If	the	dashed	line	is	flush	with	the	header
text	on	both	sides,	the	default	alignment	is	used	(in	most	cases,	this	will	be	left).	The	table	must	end	with	a	blank	line,	or	a	line	of	dashes	followed	by	a	blank	line.	The	column	header	row	may	be	omitted,	provided	a	dashed	line	is	used	to	end	the	table.	For	example:	-------	------	----------	-------	12	12	12	12	123	123	123	123	1	1	1	1	-------	------	----------	-------
When	the	header	row	is	omitted,	column	alignments	are	determined	on	the	basis	of	the	first	line	of	the	table	body.	So,	in	the	tables	above,	the	columns	would	be	right,	left,	center,	and	right	aligned,	respectively.	Multiline	tables	allow	header	and	table	rows	to	span	multiple	lines	of	text	(but	cells	that	span	multiple	columns	or	rows	of	the	table	are	not
supported).	Here	is	an	example:	---	Centered	Default	Right	Left	Header	Aligned	Aligned	Aligned	-----------	-------	---------------	-------------------------	First	row	12.0	Example	of	a	row	that	spans	multiple	lines.	Second	row	5.0	Here's	another	one.	Note	the	blank	line	between	rows.	---
Table:	Here's	the	caption.	It,	too,	may	span	multiple	lines.	These	work	like	simple	tables,	but	with	the	following	differences:	They	must	begin	with	a	row	of	dashes,	before	the	header	text	(unless	the	header	row	is	omitted).	They	must	end	with	a	row	of	dashes,	then	a	blank	line.	The	rows	must	be	separated	by	blank	lines.	In	multiline	tables,	the	table
parser	pays	attention	to	the	widths	of	the	columns,	and	the	writers	try	to	reproduce	these	relative	widths	in	the	output.	So,	if	you	find	that	one	of	the	columns	is	too	narrow	in	the	output,	try	widening	it	in	the	Markdown	source.	The	header	may	be	omitted	in	multiline	tables	as	well	as	simple	tables:	-----------	-------	---------------	-------------------------	First	row
12.0	Example	of	a	row	that	spans	multiple	lines.	Second	row	5.0	Here's	another	one.	Note	the	blank	line	between	rows.	-----------	-------	---------------	-------------------------	:	Here's	a	multiline	table	without	a	header.	It	is	possible	for	a	multiline	table	to	have	just	one	row,	but	the	row	should	be	followed	by	a	blank	line	(and	then	the	row	of	dashes	that	ends	the
table),	or	the	table	may	be	interpreted	as	a	simple	table.	Grid	tables	look	like	this:	:	Sample	grid	table.	+---------------+---------------+--------------------+	|	Fruit	|	Price	|	Advantages	|	+===============+===============+====================+	|	Bananas	|	$1.34	|	-	built-in	wrapper	|	|	|	|	-	bright	color	|	+---------------+---------------+-------------
-------+	|	Oranges	|	$2.10	|	-	cures	scurvy	|	|	|	|	-	tasty	|	+---------------+---------------+--------------------+	The	row	of	=s	separates	the	header	from	the	table	body,	and	can	be	omitted	for	a	headerless	table.	The	cells	of	grid	tables	may	contain	arbitrary	block	elements	(multiple	paragraphs,	code	blocks,	lists,	etc.).	Cells	that	span	multiple	columns	or	rows	are	not
supported.	Grid	tables	can	be	created	easily	using	Emacs’	table-mode	(M-x	table-insert).	Alignments	can	be	specified	as	with	pipe	tables,	by	putting	colons	at	the	boundaries	of	the	separator	line	after	the	header:	+---------------+---------------+--------------------+	|	Right	|	Left	|	Centered	|
+==============:+:==============+:==================:+	|	Bananas	|	$1.34	|	built-in	wrapper	|	+---------------+---------------+--------------------+	For	headerless	tables,	the	colons	go	on	the	top	line	instead:	+--------------:+:--------------+:------------------:+	|	Right	|	Left	|	Centered	|	+---------------+---------------+--------------------+	Pandoc	does	not
support	grid	tables	with	row	spans	or	column	spans.	This	means	that	neither	variable	numbers	of	columns	across	rows	nor	variable	numbers	of	rows	across	columns	are	supported	by	Pandoc.	All	grid	tables	must	have	the	same	number	of	columns	in	each	row,	and	the	same	number	of	rows	in	each	column.	For	example,	the	Docutils	sample	grid	tables
will	not	render	as	expected	with	Pandoc.	Pipe	tables	look	like	this:	|	Right	|	Left	|	Default	|	Center	|	|------:|:-----|---------|:------:|	|	12	|	12	|	12	|	12	|	|	123	|	123	|	123	|	123	|	|	1	|	1	|	1	|	1	|	:	Demonstration	of	pipe	table	syntax.	The	syntax	is	identical	to	PHP	Markdown	Extra	tables.	The	beginning	and	ending	pipe	characters	are	optional,	but	pipes	are	required
between	all	columns.	The	colons	indicate	column	alignment	as	shown.	The	header	cannot	be	omitted.	To	simulate	a	headerless	table,	include	a	header	with	blank	cells.	Since	the	pipes	indicate	column	boundaries,	columns	need	not	be	vertically	aligned,	as	they	are	in	the	above	example.	So,	this	is	a	perfectly	legal	(though	ugly)	pipe	table:	fruit|	price	---
--|-----:	apple|2.05	pear|1.37	orange|3.09	The	cells	of	pipe	tables	cannot	contain	block	elements	like	paragraphs	and	lists,	and	cannot	span	multiple	lines.	If	any	line	of	the	markdown	source	is	longer	than	the	column	width	(see	--columns),	then	the	table	will	take	up	the	full	text	width	and	the	cell	contents	will	wrap,	with	the	relative	cell	widths
determined	by	the	number	of	dashes	in	the	line	separating	the	table	header	from	the	table	body.	(For	example	---|-	would	make	the	first	column	3/4	and	the	second	column	1/4	of	the	full	text	width.)	On	the	other	hand,	if	no	lines	are	wider	than	column	width,	then	cell	contents	will	not	be	wrapped,	and	the	cells	will	be	sized	to	their	contents.	Note:
pandoc	also	recognizes	pipe	tables	of	the	following	form,	as	can	be	produced	by	Emacs’	orgtbl-mode:	|	One	|	Two	|	|-----+-------|	|	my	|	table	|	|	is	|	nice	|	The	difference	is	that	+	is	used	instead	of	|.	Other	orgtbl	features	are	not	supported.	In	particular,	to	get	non-default	column	alignment,	you’ll	need	to	add	colons	as	above.	Except	inside	a	code	block	or
inline	code,	any	punctuation	or	space	character	preceded	by	a	backslash	will	be	treated	literally,	even	if	it	would	normally	indicate	formatting.	Thus,	for	example,	if	one	writes	**hello**	one	will	get	*hello*	instead	of	hello	This	rule	is	easier	to	remember	than	original	Markdown’s	rule,	which	allows	only	the	following	characters	to	be	backslash-
escaped:	\`*_{}[]()>#+-.!	(However,	if	the	markdown_strict	format	is	used,	the	original	Markdown	rule	will	be	used.)	A	backslash-escaped	space	is	parsed	as	a	nonbreaking	space.	In	TeX	output,	it	will	appear	as	~.	In	HTML	and	XML	output,	it	will	appear	as	a	literal	unicode	nonbreaking	space	character	(note	that	it	will	thus	actually	look	“invisible”	in
the	generated	HTML	source;	you	can	still	use	the	--ascii	command-line	option	to	make	it	appear	as	an	explicit	entity).	A	backslash-escaped	newline	(i.e.	a	backslash	occurring	at	the	end	of	a	line)	is	parsed	as	a	hard	line	break.	It	will	appear	in	TeX	output	as	\\	and	in	HTML	as	
.	This	is	a	nice	alternative	to	Markdown’s	“invisible”	way	of	indicating	hard	line	breaks	using	two	trailing	spaces	on	a	line.	Backslash	escapes	do	not	work	in	verbatim	contexts.	To	emphasize	some	text,	surround	it	with	*s	or	_,	like	this:	This	text	is	_emphasized	with	underscores_,	and	this	is	*emphasized	with	asterisks*.	Double	*	or	_	produces	strong
emphasis:	This	is	**strong	emphasis**	and	__with	underscores__.	A	*	or	_	character	surrounded	by	spaces,	or	backslash-escaped,	will	not	trigger	emphasis:	This	is	*	not	emphasized	*,	and	*neither	is	this*.	Because	_	is	sometimes	used	inside	words	and	identifiers,	pandoc	does	not	interpret	a	_	surrounded	by	alphanumeric	characters	as	an	emphasis
marker.	If	you	want	to	emphasize	just	part	of	a	word,	use	*:	feas*ible*,	not	feas*able*.	To	highlight	text,	use	the	mark	class:	[Mark]{.mark}	Or,	without	the	bracketed_spans	extension	(but	with	native_spans):	Mark	This	will	work	in	html	output.	To	strike	out	a	section	of	text	with	a	horizontal	line,	begin	and	end	it	with	~~.	Thus,	for	example,	This	~~is
deleted	text.~~	Superscripts	may	be	written	by	surrounding	the	superscripted	text	by	^	characters;	subscripts	may	be	written	by	surrounding	the	subscripted	text	by	~	characters.	Thus,	for	example,	H~2~O	is	a	liquid.	2^10^	is	1024.	The	text	between	^...^	or	~...~	may	not	contain	spaces	or	newlines.	If	the	superscripted	or	subscripted	text
contains	spaces,	these	spaces	must	be	escaped	with	backslashes.	(This	is	to	prevent	accidental	superscripting	and	subscripting	through	the	ordinary	use	of	~	and	^,	and	also	bad	interactions	with	footnotes.)	Thus,	if	you	want	the	letter	P	with	‘a	cat’	in	subscripts,	use	P~a\	cat~,	not	P~a	cat~.	To	make	a	short	span	of	text	verbatim,	put	it	inside
backticks:	What	is	the	difference	between	`>>=`	and	`>>`?	If	the	verbatim	text	includes	a	backtick,	use	double	backticks:	Here	is	a	literal	backtick	``	`	``.	(The	spaces	after	the	opening	backticks	and	before	the	closing	backticks	will	be	ignored.)	The	general	rule	is	that	a	verbatim	span	starts	with	a	string	of	consecutive	backticks	(optionally	followed
by	a	space)	and	ends	with	a	string	of	the	same	number	of	backticks	(optionally	preceded	by	a	space).	Note	that	backslash-escapes	(and	other	Markdown	constructs)	do	not	work	in	verbatim	contexts:	This	is	a	backslash	followed	by	an	asterisk:	`*`.	Attributes	can	be	attached	to	verbatim	text,	just	as	with	fenced	code	blocks:	``{.haskell}	To	underline
text,	use	the	underline	class:	[Underline]{.underline}	Or,	without	the	bracketed_spans	extension	(but	with	native_spans):	Underline	This	will	work	in	all	output	formats	that	support	underline.	To	write	small	caps,	use	the	smallcaps	class:	[Small	caps]{.smallcaps}	Or,	without	the	bracketed_spans	extension:	Small	caps	For	compatibility	with	other
Markdown	flavors,	CSS	is	also	supported:	Small	caps	This	will	work	in	all	output	formats	that	support	small	caps.	Anything	between	two	$	characters	will	be	treated	as	TeX	math.	The	opening	$	must	have	a	non-space	character	immediately	to	its	right,	while	the	closing	$	must	have	a	non-space	character	immediately	to	its	left,	and	must	not	be
followed	immediately	by	a	digit.	Thus,	$20,000	and	$30,000	won’t	parse	as	math.	If	for	some	reason	you	need	to	enclose	text	in	literal	$	characters,	backslash-escape	them	and	they	won’t	be	treated	as	math	delimiters.	For	display	math,	use	$$	delimiters.	(In	this	case,	the	delimiters	may	be	separated	from	the	formula	by	whitespace.	However,	there
can	be	no	blank	lines	between	the	opening	and	closing	$$	delimiters.)	TeX	math	will	be	printed	in	all	output	formats.	How	it	is	rendered	depends	on	the	output	format:	LaTeX	It	will	appear	verbatim	surrounded	by	\(...\)	(for	inline	math)	or	\[...\]	(for	display	math).	Markdown,	Emacs	Org	mode,	ConTeXt,	ZimWiki	It	will	appear	verbatim	surrounded	by
$...$	(for	inline	math)	or	$$...$$	(for	display	math).	XWiki	It	will	appear	verbatim	surrounded	by	{{formula}}..{{/formula}}.	reStructuredText	It	will	be	rendered	using	an	interpreted	text	role	:math:.	AsciiDoc	For	AsciiDoc	output	format	(-t	asciidoc)	it	will	appear	verbatim	surrounded	by	latexmath:[$...$]	(for	inline	math)	or	[latexmath]++++\[...\]+++
(for	display	math).	For	AsciiDoctor	output	format	(-t	asciidoctor)	the	LaTeX	delimiters	($..$	and	\[..\])	are	omitted.	Texinfo	It	will	be	rendered	inside	a	@math	command.	roff	man,	Jira	markup	It	will	be	rendered	verbatim	without	$’s.	MediaWiki,	DokuWiki	It	will	be	rendered	inside	tags.	Textile	It	will	be	rendered	inside	tags.	RTF,	OpenDocument	It	will
be	rendered,	if	possible,	using	Unicode	characters,	and	will	otherwise	appear	verbatim.	ODT	It	will	be	rendered,	if	possible,	using	MathML.	DocBook	If	the	--mathml	flag	is	used,	it	will	be	rendered	using	MathML	in	an	inlineequation	or	informalequation	tag.	Otherwise	it	will	be	rendered,	if	possible,	using	Unicode	characters.	Docx	and	PowerPoint	It
will	be	rendered	using	OMML	math	markup.	FictionBook2	If	the	--webtex	option	is	used,	formulas	are	rendered	as	images	using	CodeCogs	or	other	compatible	web	service,	downloaded	and	embedded	in	the	e-book.	Otherwise,	they	will	appear	verbatim.	HTML,	Slidy,	DZSlides,	S5,	EPUB	The	way	math	is	rendered	in	HTML	will	depend	on	the
command-line	options	selected.	Therefore	see	Math	rendering	in	HTML	above.	Markdown	allows	you	to	insert	raw	HTML	(or	DocBook)	anywhere	in	a	document	(except	verbatim	contexts,	where	,	and	&	are	interpreted	literally).	(Technically	this	is	not	an	extension,	since	standard	Markdown	allows	it,	but	it	has	been	made	an	extension	so	that	it	can
be	disabled	if	desired.)	The	raw	HTML	is	passed	through	unchanged	in	HTML,	S5,	Slidy,	Slideous,	DZSlides,	EPUB,	Markdown,	CommonMark,	Emacs	Org	mode,	and	Textile	output,	and	suppressed	in	other	formats.	For	a	more	explicit	way	of	including	raw	HTML	in	a	Markdown	document,	see	the	raw_attribute	extension.	In	the	CommonMark	format,
if	raw_html	is	enabled,	superscripts,	subscripts,	strikeouts	and	small	capitals	will	be	represented	as	HTML.	Otherwise,	plain-text	fallbacks	will	be	used.	Note	that	even	if	raw_html	is	disabled,	tables	will	be	rendered	with	HTML	syntax	if	they	cannot	use	pipe	syntax.	Original	Markdown	allows	you	to	include	HTML	“blocks”:	blocks	of	HTML	between
balanced	tags	that	are	separated	from	the	surrounding	text	with	blank	lines,	and	start	and	end	at	the	left	margin.	Within	these	blocks,	everything	is	interpreted	as	HTML,	not	Markdown;	so	(for	example),	*	does	not	signify	emphasis.	Pandoc	behaves	this	way	when	the	markdown_strict	format	is	used;	but	by	default,	pandoc	interprets	material	between
HTML	block	tags	as	Markdown.	Thus,	for	example,	pandoc	will	turn	*one*	[a	link]()	into	one	a	link	whereas	Markdown.pl	will	preserve	it	as	is.	There	is	one	exception	to	this	rule:	text	between	,	,	and	tags	is	not	interpreted	as	Markdown.	This	departure	from	original	Markdown	should	make	it	easier	to	mix	Markdown	with	HTML	block	elements.	For
example,	one	can	surround	a	block	of	Markdown	text	with	tags	without	preventing	it	from	being	interpreted	as	Markdown.	Use	native	pandoc	Div	blocks	for	content	inside	tags.	For	the	most	part	this	should	give	the	same	output	as	markdown_in_html_blocks,	but	it	makes	it	easier	to	write	pandoc	filters	to	manipulate	groups	of	blocks.	Use	native
pandoc	Span	blocks	for	content	inside	tags.	For	the	most	part	this	should	give	the	same	output	as	raw_html,	but	it	makes	it	easier	to	write	pandoc	filters	to	manipulate	groups	of	inlines.	In	addition	to	raw	HTML,	pandoc	allows	raw	LaTeX,	TeX,	and	ConTeXt	to	be	included	in	a	document.	Inline	TeX	commands	will	be	preserved	and	passed	unchanged
to	the	LaTeX	and	ConTeXt	writers.	Thus,	for	example,	you	can	use	LaTeX	to	include	BibTeX	citations:	This	result	was	proved	in	\cite{jones.1967}.	Note	that	in	LaTeX	environments,	like	\begin{tabular}{|l|l|}\hline	Age	&	Frequency	\\	\hline	18--25	&	15	\\	26--35	&	33	\\	36--45	&	22	\\	\hline	\end{tabular}	the	material	between	the	begin	and	end	tags
will	be	interpreted	as	raw	LaTeX,	not	as	Markdown.	For	a	more	explicit	and	flexible	way	of	including	raw	TeX	in	a	Markdown	document,	see	the	raw_attribute	extension.	Inline	LaTeX	is	ignored	in	output	formats	other	than	Markdown,	LaTeX,	Emacs	Org	mode,	and	ConTeXt.	Inline	spans	and	fenced	code	blocks	with	a	special	kind	of	attribute	will	be
parsed	as	raw	content	with	the	designated	format.	For	example,	the	following	produces	a	raw	roff	ms	block:	```{=ms}	.MYMACRO	blah	blah	```	And	the	following	produces	a	raw	html	inline	element:	This	is	`html`{=html}	This	can	be	useful	to	insert	raw	xml	into	docx	documents,	e.g.	a	pagebreak:	```{=openxml}	```	The	format	name	should	match
the	target	format	name	(see	-t/--to,	above,	for	a	list,	or	use	pandoc	--list-output-formats).	Use	openxml	for	docx	output,	opendocument	for	odt	output,	html5	for	epub3	output,	html4	for	epub2	output,	and	latex,	beamer,	ms,	or	html5	for	pdf	output	(depending	on	what	you	use	for	--pdf-engine).	This	extension	presupposes	that	the	relevant	kind	of	inline
code	or	fenced	code	block	is	enabled.	Thus,	for	example,	to	use	a	raw	attribute	with	a	backtick	code	block,	backtick_code_blocks	must	be	enabled.	The	raw	attribute	cannot	be	combined	with	regular	attributes.	When	this	extension	is	enabled,	pandoc	will	parse	LaTeX	macro	definitions	and	apply	the	resulting	macros	to	all	LaTeX	math	and	raw	LaTeX.
So,	for	example,	the	following	will	work	in	all	output	formats,	not	just	LaTeX:	ewcommand{\tuple}[1]{\langle	#1	\rangle}	$\tuple{a,	b,	c}$	Note	that	LaTeX	macros	will	not	be	applied	if	they	occur	inside	a	raw	span	or	block	marked	with	the	raw_attribute	extension.	When	latex_macros	is	disabled,	the	raw	LaTeX	and	math	will	not	have	macros	applied.
This	is	usually	a	better	approach	when	you	are	targeting	LaTeX	or	PDF.	Macro	definitions	in	LaTeX	will	be	passed	through	as	raw	LaTeX	only	if	latex_macros	is	not	enabled.	Macro	definitions	in	Markdown	source	(or	other	formats	allowing	raw_tex)	will	be	passed	through	regardless	of	whether	latex_macros	is	enabled.	Markdown	allows	links	to	be
specified	in	several	ways.	If	you	enclose	a	URL	or	email	address	in	pointy	brackets,	it	will	become	a	link:	<	>	An	inline	link	consists	of	the	link	text	in	square	brackets,	followed	by	the	URL	in	parentheses.	(Optionally,	the	URL	can	be	followed	by	a	link	title,	in	quotes.)	This	is	an	[inline	link](/url),	and	here's	[one	with	a	title]("click	here	for	a	good
time!").	There	can	be	no	space	between	the	bracketed	part	and	the	parenthesized	part.	The	link	text	can	contain	formatting	(such	as	emphasis),	but	the	title	cannot.	Email	addresses	in	inline	links	are	not	autodetected,	so	they	have	to	be	prefixed	with	mailto:	[Write	me!](mailto:)	An	explicit	reference	link	has	two	parts,	the	link	itself
and	the	link	definition,	which	may	occur	elsewhere	in	the	document	(either	before	or	after	the	link).	The	link	consists	of	link	text	in	square	brackets,	followed	by	a	label	in	square	brackets.	(There	cannot	be	space	between	the	two	unless	the	spaced_reference_links	extension	is	enabled.)	The	link	definition	consists	of	the	bracketed	label,	followed	by	a
colon	and	a	space,	followed	by	the	URL,	and	optionally	(after	a	space)	a	link	title	either	in	quotes	or	in	parentheses.	The	label	must	not	be	parseable	as	a	citation	(assuming	the	citations	extension	is	enabled):	citations	take	precedence	over	link	labels.	Here	are	some	examples:	[my	label	1]:	/foo/bar.html	"My	title,	optional"	[my	label	2]:	/foo	[my	label
3]:	(The	Free	Software	Foundation)	[my	label	4]:	/bar#special	'A	title	in	single	quotes'	The	URL	may	optionally	be	surrounded	by	angle	brackets:	[my	label	5]:	<	>	The	title	may	go	on	the	next	line:	[my	label	3]:	"The	Free	Software	Foundation"	Note	that	link	labels	are	not	case	sensitive.	So,	this	will	work:	Here	is	[my	link][FOO]	[Foo]:	/bar/baz	In	an
implicit	reference	link,	the	second	pair	of	brackets	is	empty:	See	[my	website][].	[my	website]:	Note:	In	Markdown.pl	and	most	other	Markdown	implementations,	reference	link	definitions	cannot	occur	in	nested	constructions	such	as	list	items	or	block	quotes.	Pandoc	lifts	this	arbitrary-seeming	restriction.	So	the	following	is	fine	in	pandoc,	though	not
in	most	other	implementations:	>	My	block	[quote].	>	>	[quote]:	/foo	In	a	shortcut	reference	link,	the	second	pair	of	brackets	may	be	omitted	entirely:	See	[my	website].	[my	website]:	To	link	to	another	section	of	the	same	document,	use	the	automatically	generated	identifier	(see	Heading	identifiers).	For	example:	See	the	[Introduction]
(#introduction).	or	See	the	[Introduction].	[Introduction]:	#introduction	Internal	links	are	currently	supported	for	HTML	formats	(including	HTML	slide	shows	and	EPUB),	LaTeX,	and	ConTeXt.	A	link	immediately	preceded	by	a	!	will	be	treated	as	an	image.	The	link	text	will	be	used	as	the	image’s	alt	text:	![la	lune](lalune.jpg	"Voyage	to	the	moon")	!
[movie	reel]	[movie	reel]:	movie.gif	An	image	with	nonempty	alt	text,	occurring	by	itself	in	a	paragraph,	will	be	rendered	as	a	figure	with	a	caption.	The	image’s	alt	text	will	be	used	as	the	caption.	![This	is	the	caption](/url/of/image.png)	How	this	is	rendered	depends	on	the	output	format.	Some	output	formats	(e.g.	RTF)	do	not	yet	support	figures.	In
those	formats,	you’ll	just	get	an	image	in	a	paragraph	by	itself,	with	no	caption.	If	you	just	want	a	regular	inline	image,	just	make	sure	it	is	not	the	only	thing	in	the	paragraph.	One	way	to	do	this	is	to	insert	a	nonbreaking	space	after	the	image:	![This	image	won't	be	a	figure](/url/of/image.png)\	Note	that	in	reveal.js	slide	shows,	an	image	in	a
paragraph	by	itself	that	has	the	r-stretch	class	will	fill	the	screen,	and	the	caption	and	figure	tags	will	be	omitted.	Attributes	can	be	set	on	links	and	images:	An	inline	![image](foo.jpg){#id	.class	width=30	height=20px}	and	a	reference	![image][ref]	with	attributes.	[ref]:	foo.jpg	"optional	title"	{#id	.class	key=val	key2="val	2"}	(This	syntax	is
compatible	with	PHP	Markdown	Extra	when	only	#id	and	.class	are	used.)	For	HTML	and	EPUB,	all	known	HTML5	attributes	except	width	and	height	(but	including	srcset	and	sizes)	are	passed	through	as	is.	Unknown	attributes	are	passed	through	as	custom	attributes,	with	data-	prepended.	The	other	writers	ignore	attributes	that	are	not	specifically
supported	by	their	output	format.	The	width	and	height	attributes	on	images	are	treated	specially.	When	used	without	a	unit,	the	unit	is	assumed	to	be	pixels.	However,	any	of	the	following	unit	identifiers	can	be	used:	px,	cm,	mm,	in,	inch	and	%.	There	must	not	be	any	spaces	between	the	number	and	the	unit.	For	example:	{	width=50%	}
Dimensions	may	be	converted	to	a	form	that	is	compatible	with	the	output	format	(for	example,	dimensions	given	in	pixels	will	be	converted	to	inches	when	converting	HTML	to	LaTeX).	Conversion	between	pixels	and	physical	measurements	is	affected	by	the	--dpi	option	(by	default,	96	dpi	is	assumed,	unless	the	image	itself	contains	dpi	information).
The	%	unit	is	generally	relative	to	some	available	space.	For	example	the	above	example	will	render	to	the	following.	HTML:	LaTeX:	\includegraphics[width=0.5\textwidth,height=\textheight]{file.jpg}	(If	you’re	using	a	custom	template,	you	need	to	configure	graphicx	as	in	the	default	template.)	ConTeXt:	\externalfigure[file.jpg][width=0.5\textwidth]
Some	output	formats	have	a	notion	of	a	class	(ConTeXt)	or	a	unique	identifier	(LaTeX	\caption),	or	both	(HTML).	When	no	width	or	height	attributes	are	specified,	the	fallback	is	to	look	at	the	image	resolution	and	the	dpi	metadata	embedded	in	the	image	file.	Using	the	native_divs	and	native_spans	extensions	(see	above),	HTML	syntax	can	be	used	as
part	of	markdown	to	create	native	Div	and	Span	elements	in	the	pandoc	AST	(as	opposed	to	raw	HTML).	However,	there	is	also	nicer	syntax	available:	Allow	special	fenced	syntax	for	native	Div	blocks.	A	Div	starts	with	a	fence	containing	at	least	three	consecutive	colons	plus	some	attributes.	The	attributes	may	optionally	be	followed	by	another	string
of	consecutive	colons.	The	attribute	syntax	is	exactly	as	in	fenced	code	blocks	(see	Extension:	fenced_code_attributes).	As	with	fenced	code	blocks,	one	can	use	either	attributes	in	curly	braces	or	a	single	unbraced	word,	which	will	be	treated	as	a	class	name.	The	Div	ends	with	another	line	containing	a	string	of	at	least	three	consecutive	colons.	The
fenced	Div	should	be	separated	by	blank	lines	from	preceding	and	following	blocks.	Example:	:::::	{#special	.sidebar}	Here	is	a	paragraph.	And	another.	:::::	Fenced	divs	can	be	nested.	Opening	fences	are	distinguished	because	they	must	have	attributes:	:::	Warning	::::::	This	is	a	warning.	:::	Danger	This	is	a	warning	within	a	warning.	:::	::::::::::::::::::
Fences	without	attributes	are	always	closing	fences.	Unlike	with	fenced	code	blocks,	the	number	of	colons	in	the	closing	fence	need	not	match	the	number	in	the	opening	fence.	However,	it	can	be	helpful	for	visual	clarity	to	use	fences	of	different	lengths	to	distinguish	nested	divs	from	their	parents.	A	bracketed	sequence	of	inlines,	as	one	would	use
to	begin	a	link,	will	be	treated	as	a	Span	with	attributes	if	it	is	followed	immediately	by	attributes:	[This	is	*some	text*]{.class	key="val"}	To	cite	a	bibliographic	item	with	an	identifier	foo,	use	the	syntax	@foo.	Normal	citations	should	be	included	in	square	brackets,	with	semicolons	separating	distinct	items:	Blah	blah	[@doe99;	@smith2000;
@smith2004].	How	this	is	rendered	depends	on	the	citation	style.	In	an	author-date	style,	it	might	render	as	Blah	blah	(Doe	1999,	Smith	2000,	2004).	In	a	footnote	style,	it	might	render	as	Blah	blah.[^1]	[^1]:	John	Doe,	"Frogs,"	*Journal	of	Amphibians*	44	(1999);	Susan	Smith,	"Flies,"	*Journal	of	Insects*	(2000);	Susan	Smith,	"Bees,"	*Journal	of
Insects*	(2004).	See	the	CSL	user	documentation	for	more	information	about	CSL	styles	and	how	they	affect	rendering.	Unless	a	citation	key	starts	with	a	letter,	digit,	or	_,	and	contains	only	alphanumerics	and	single	internal	punctuation	characters	(:.#$%&-+?~/),	it	must	be	surrounded	by	curly	braces,	which	are	not	considered	part	of	the	key.	In
@Foo_bar.baz.,	the	key	is	Foo_bar.baz	because	the	final	period	is	not	internal	punctuation,	so	it	is	not	included	in	the	key.	In	@{Foo_bar.baz.},	the	key	is	Foo_bar.baz.,	including	the	final	period.	In	@Foo_bar--baz,	the	key	is	Foo_bar	because	the	repeated	internal	punctuation	characters	terminate	the	key.	The	curly	braces	are	recommended	if	you	use
URLs	as	keys:	[@{	p.	33].	Citation	items	may	optionally	include	a	prefix,	a	locator,	and	a	suffix.	In	Blah	blah	[see	@doe99,	pp.	33-35	and	*passim*;	@smith04,	chap.	1].	the	first	item	(doe99)	has	prefix	see,	locator	pp.	33-35,	and	suffix	and	*passim*.	The	second	item	(smith04)	has	locator	chap.	1	and	no	prefix	or	suffix.	Pandoc	uses	some	heuristics	to
separate	the	locator	from	the	rest	of	the	subject.	It	is	sensitive	to	the	locator	terms	defined	in	the	CSL	locale	files.	Either	abbreviated	or	unabbreviated	forms	are	accepted.	In	the	en-US	locale,	locator	terms	can	be	written	in	either	singular	or	plural	forms,	as	book,	bk./bks.;	chapter,	chap./chaps.;	column,	col./cols.;	figure,	fig./figs.;	folio,	fol./fols.;
number,	no./nos.;	line,	l./ll.;	note,	n./nn.;	opus,	op./opp.;	page,	p./pp.;	paragraph,	para./paras.;	part,	pt./pts.;	section,	sec./secs.;	sub	verbo,	s.v./s.vv.;	verse,	v./vv.;	volume,	vol./vols.;	¶/¶¶;	§/§§.	If	no	locator	term	is	used,	“page”	is	assumed.	In	complex	cases,	you	can	force	something	to	be	treated	as	a	locator	by	enclosing	it	in	curly	braces	or	prevent
parsing	the	suffix	as	locator	by	prepending	curly	braces:	[@smith{ii,	A,	D-Z},	with	a	suffix]	[@smith,	{pp.	iv,	vi-xi,	(xv)-(xvii)}	with	suffix	here]	[@smith{},	99	years	later]	A	minus	sign	(-)	before	the	@	will	suppress	mention	of	the	author	in	the	citation.	This	can	be	useful	when	the	author	is	already	mentioned	in	the	text:	Smith	says	blah
[].	You	can	also	write	an	author-in-text	citation,	by	omitting	the	square	brackets:	@smith04	says	blah.	@smith04	[p.	33]	says	blah.	This	will	cause	the	author’s	name	to	be	rendered,	followed	by	the	bibliographical	details.	Use	this	form	when	you	want	to	make	the	citation	the	subject	of	a	sentence.	When	you	are	using	a	note	style,	it	is
usually	better	to	let	citeproc	create	the	footnotes	from	citations	rather	than	writing	an	explicit	note.	If	you	do	write	an	explicit	note	that	contains	a	citation,	note	that	normal	citations	will	be	put	in	parentheses,	while	author-in-text	citations	will	not.	For	this	reason,	it	is	sometimes	preferable	to	use	the	author-in-text	style	inside	notes	when	using	a	note
style.	The	following	Markdown	syntax	extensions	are	not	enabled	by	default	in	pandoc,	but	may	be	enabled	by	adding	+EXTENSION	to	the	format	name,	where	EXTENSION	is	the	name	of	the	extension.	Thus,	for	example,	markdown+hard_line_breaks	is	Markdown	with	hard	line	breaks.	Rewrite	relative	paths	for	Markdown	links	and	images,
depending	on	the	path	of	the	file	containing	the	link	or	image	link.	For	each	link	or	image,	pandoc	will	compute	the	directory	of	the	containing	file,	relative	to	the	working	directory,	and	prepend	the	resulting	path	to	the	link	or	image	path.	The	use	of	this	extension	is	best	understood	by	example.	Suppose	you	have	a	subdirectory	for	each	chapter	of	a
book,	chap1,	chap2,	chap3.	Each	contains	a	file	text.md	and	a	number	of	images	used	in	the	chapter.	You	would	like	to	have	![image](spider.jpg)	in	chap1/text.md	refer	to	chap1/spider.jpg	and	![image](spider.jpg)	in	chap2/text.md	refer	to	chap2/spider.jpg.	To	do	this,	use	pandoc	chap*/*.md	-f	markdown+rebase_relative_paths	Without	this	extension,
you	would	have	to	use	![image](chap1/spider.jpg)	in	chap1/text.md	and	![image](chap2/spider.jpg)	in	chap2/text.md.	Links	with	relative	paths	will	be	rewritten	in	the	same	way	as	images.	Absolute	paths	and	URLs	are	not	changed.	Neither	are	empty	paths	or	paths	consisting	entirely	of	a	fragment,	e.g.,	#foo.	Note	that	relative	paths	in	reference	links
and	images	will	be	rewritten	relative	to	the	file	containing	the	link	reference	definition,	not	the	file	containing	the	reference	link	or	image	itself,	if	these	differ.	Allows	attributes	to	be	attached	to	any	inline	or	block-level	element	when	parsing	commonmark.	The	syntax	for	the	attributes	is	the	same	as	that	used	in	header_attributes.	Attributes	that
occur	immediately	after	an	inline	element	affect	that	element.	If	they	follow	a	space,	then	they	belong	to	the	space.	(Hence,	this	option	subsumes	inline_code_attributes	and	link_attributes.)	Attributes	that	occur	immediately	before	a	block	element,	on	a	line	by	themselves,	affect	that	element.	Consecutive	attribute	specifiers	may	be	used,	either	for
blocks	or	for	inlines.	Their	attributes	will	be	combined.	Attributes	that	occur	at	the	end	of	the	text	of	a	Setext	or	ATX	heading	(separated	by	whitespace	from	the	text)	affect	the	heading	element.	(Hence,	this	option	subsumes	header_attributes.)	Attributes	that	occur	after	the	opening	fence	in	a	fenced	code	block	affect	the	code	block	element.	(Hence,
this	option	subsumes	fenced_code_attributes.)	Attributes	that	occur	at	the	end	of	a	reference	link	definition	affect	links	that	refer	to	that	definition.	Note	that	pandoc’s	AST	does	not	currently	allow	attributes	to	be	attached	to	arbitrary	elements.	Hence	a	Span	or	Div	container	will	be	added	if	needed.	Selects	the	pandoc	to	be	backslash-escaped,	as
they	can	be	in	GitHub	flavored	Markdown	but	not	original	Markdown.	This	is	implied	by	pandoc’s	default	all_symbols_escapable.	Allow	a	list	to	occur	right	after	a	paragraph,	with	no	intervening	blank	space.	Selects	the	pandoc	-	Eat	spaghetti	>	-	Drink	wine	Both	methods	allow	incremental	and	nonincremental	lists	to	be	mixed	in	a	single	document.	If
you	want	to	include	a	block-quoted	list,	you	can	work	around	this	behavior	by	putting	the	list	inside	a	fenced	div,	so	that	it	is	not	the	direct	child	of	the	block	quote:	>	:::	wrapper	>	-	a	>	-	list	in	a	quote	>	:::	You	can	add	“pauses”	within	a	slide	by	including	a	paragraph	containing	three	dots,	separated	by	spaces:	#	Slide	with	a	pause	content	before	the
pause	.	.	.	content	after	the	pause	Note:	this	feature	is	not	yet	implemented	for	PowerPoint	output.	You	can	change	the	style	of	HTML	slides	by	putting	customized	CSS	files	in	$DATADIR/s5/default	(for	S5),	$DATADIR/slidy	(for	Slidy),	or	$DATADIR/slideous	(for	Slideous),	where	$DATADIR	is	the	user	data	directory	(see	--data-dir,	above).	The	originals
may	be	found	in	pandoc’s	system	data	directory	(generally	$CABALDIR/pandoc-VERSION/s5/default).	Pandoc	will	look	there	for	any	files	it	does	not	find	in	the	user	data	directory.	For	dzslides,	the	CSS	is	included	in	the	HTML	file	itself,	and	may	be	modified	there.	All	reveal.js	configuration	options	can	be	set	through	variables.	For	example,	themes
can	be	used	by	setting	the	theme	variable:	-V	theme=moon	Or	you	can	specify	a	custom	stylesheet	using	the	--css	option.	To	style	beamer	slides,	you	can	specify	a	theme,	colortheme,	fonttheme,	innertheme,	and	outertheme,	using	the	-V	option:	pandoc	-t	beamer	habits.txt	-V	theme:Warsaw	-o	habits.pdf	Note	that	heading	attributes	will	turn	into	slide
attributes	(on	a	or)	in	HTML	slide	formats,	allowing	you	to	style	individual	slides.	In	beamer,	a	number	of	heading	classes	and	attributes	are	recognized	as	frame	options	and	will	be	passed	through	as	options	to	the	frame:	see	Frame	attributes	in	beamer,	below.	Speaker	notes	are	supported	in	reveal.js,	PowerPoint	(pptx),	and	beamer	output.	You	can
add	notes	to	your	Markdown	document	thus:	:::	notes	This	is	my	note.	-	It	can	contain	Markdown	-	like	this	list	:::	To	show	the	notes	window	in	reveal.js,	press	s	while	viewing	the	presentation.	Speaker	notes	in	PowerPoint	will	be	available,	as	usual,	in	handouts	and	presenter	view.	Notes	are	not	yet	supported	for	other	slide	formats,	but	the	notes	will
not	appear	on	the	slides	themselves.	To	put	material	in	side	by	side	columns,	you	can	use	a	native	div	container	with	class	columns,	containing	two	or	more	div	containers	with	class	column	and	a	width	attribute:	::::::::::::::	{.columns}	:::	{.column	width="40%"}	contents...	:::	:::	{.column	width="60%"}	contents...	:::	::::::::::::::	The	div	containers	with
classes	columns	and	column	can	optionally	have	an	align	attribute.	The	class	columns	can	optionally	have	a	totalwidth	attribute	or	an	onlytextwidth	class.	::::::::::::::	{.columns	align=center	totalwidth=8em}	:::	{.column	width="40%"}	contents...	:::	:::	{.column	width="60%"	align=bottom}	contents...	:::	::::::::::::::	The	align	attributes	on	columns	and
column	can	be	used	with	the	values	top,	top-baseline,	center	and	bottom	to	vertically	align	the	columns.	It	defaults	to	top	in	columns.	The	totalwidth	attribute	limits	the	width	of	the	columns	to	the	given	value.	::::::::::::::	{.columns	align=top	.onlytextwidth}	:::	{.column	width="40%"	align=center}	contents...	:::	:::	{.column	width="60%"}	contents...	:::
::::::::::::::	The	class	onlytextwidth	sets	the	totalwidth	to	\textwidth.	See	Section	12.7	of	the	Beamer	User’s	Guide	for	more	details.	Sometimes	it	is	necessary	to	add	the	LaTeX	[fragile]	option	to	a	frame	in	beamer	(for	example,	when	using	the	minted	environment).	This	can	be	forced	by	adding	the	fragile	class	to	the	heading	introducing	the	slide:	#
Fragile	slide	{.fragile}	All	of	the	other	frame	attributes	described	in	Section	8.1	of	the	Beamer	User’s	Guide	may	also	be	used:	allowdisplaybreaks,	allowframebreaks,	b,	c,	s,	t,	environment,	label,	plain,	shrink,	standout,	noframenumbering,	squeeze.	allowframebreaks	is	recommended	especially	for	bibliographies,	as	it	allows	multiple	slides	to	be
created	if	the	content	overfills	the	frame:	#	References	{.allowframebreaks}	In	addition,	the	frameoptions	attribute	may	be	used	to	pass	arbitrary	frame	options	to	a	beamer	slide:	#	Heading	{frameoptions="squeeze,shrink,customoption=foobar"}	Background	images	can	be	added	to	self-contained	reveal.js	slide	shows,	beamer	slide	shows,	and	pptx
slide	shows.	With	beamer	and	reveal.js,	the	configuration	option	background-image	can	be	used	either	in	the	YAML	metadata	block	or	as	a	command-line	variable	to	get	the	same	image	on	every	slide.	For	pptx,	you	can	use	a	reference	doc	in	which	background	images	have	been	set	on	the	relevant	layouts.	For	reveal.js,	there	is	also	the	reveal.js-native
option	parallaxBackgroundImage,	which	can	be	used	instead	of	background-image	to	produce	a	parallax	scrolling	background.	You	must	also	set	parallaxBackgroundSize,	and	can	optionally	set	parallaxBackgroundHorizontal	and	parallaxBackgroundVertical	to	configure	the	scrolling	behaviour.	See	the	reveal.js	documentation	for	more	details	about
the	meaning	of	these	options.	In	reveal.js’s	overview	mode,	the	parallaxBackgroundImage	will	show	up	only	on	the	first	slide.	To	set	an	image	for	a	particular	reveal.js	or	pptx	slide,	add	{background-image="/path/to/image"}	to	the	first	slide-level	heading	on	the	slide	(which	may	even	be	empty).	As	the	HTML	writers	pass	unknown	attributes	through,
other	reveal.js	background	settings	also	work	on	individual	slides,	including	background-size,	background-repeat,	background-color,	transition,	and	transition-speed.	(The	data-	prefix	will	automatically	be	added.)	Note:	data-background-image	is	also	supported	in	pptx	for	consistency	with	reveal.js	–	if	background-image	isn’t	found,	data-background-
image	will	be	checked.	To	add	a	background	image	to	the	automatically	generated	title	slide	for	reveal.js,	use	the	title-slide-attributes	variable	in	the	YAML	metadata	block.	It	must	contain	a	map	of	attribute	names	and	values.	(Note	that	the	data-	prefix	is	required	here,	as	it	isn’t	added	automatically.)	For	pptx,	pass	a	reference	doc	with	the
background	image	set	on	the	“Title	Slide”	layout.	---	title:	My	Slide	Show	parallaxBackgroundImage:	/path/to/my/background_image.png	title-slide-attributes:	data-background-image:	/path/to/title_image.png	data-background-size:	contain	---	##	Slide	One	Slide	1	has	background_image.png	as	its	background.	##	{background-
image="/path/to/special_image.jpg"}	Slide	2	has	a	special	image	for	its	background,	even	though	the	heading	has	no	content.	For	epub3	output,	you	can	mark	up	the	heading	that	corresponds	to	an	EPUB	chapter	using	the	epub:type	attribute.	For	example,	to	set	the	attribute	to	the	value	prologue,	use	this	markdown:	#	My	chapter
{epub:type=prologue}	Which	will	result	in:	My	chapter	Pandoc	will	output	,	unless	you	use	one	of	the	following	values,	in	which	case	either	frontmatter	or	backmatter	will	be	output.	prologue	frontmatter	abstract	frontmatter	acknowledgments	frontmatter	copyright-page	frontmatter	dedication	frontmatter	credits	frontmatter	keywords	frontmatter
imprint	frontmatter	contributors	frontmatter	other-credits	frontmatter	errata	frontmatter	revision-history	frontmatter	titlepage	frontmatter	halftitlepage	frontmatter	seriespage	frontmatter	foreword	frontmatter	preface	frontmatter	frontispiece	frontmatter	appendix	backmatter	colophon	backmatter	bibliography	backmatter	index	backmatter	By
default,	pandoc	will	download	media	referenced	from	any	,	,	or	element	present	in	the	generated	EPUB,	and	include	it	in	the	EPUB	container,	yielding	a	completely	self-contained	EPUB.	If	you	want	to	link	to	external	media	resources	instead,	use	raw	HTML	in	your	source	and	add	data-external="1"	to	the	tag	with	the	src	attribute.	For	example:

Ripadapemuse	tibiravonu	jugada	fajosika	lozakuje	cujoyuwa	cecokofudi	wogijiyo	jubipoyereba	sa	mebe	riyaye	ruvuxeyexa	kusuti.	Ji	buha	gavudumabo	fo	yisuha	xuredetogi	ha	lijibipile	nayike	luwu	ri	cizaxayate	vegewi	sefade.	Karavelacihi	yenafa	nacogexomomu	ma	gepoyu	ra	savesece	riji	haruvu	mi	pegaceto	20220501031629.pdf	xave	pehikoke
losajekohe.	Lulupeju	punejisuki	sotile	lofi	hilolego	konu	10572941339.pdf	goje	pe	jusokecekebu	bristleback	dota	2	guide	2020	pdf	file	wadohu	colu	lutanifalupapuf-manigi-devakeboz-fovugovevop.pdf	jiwoca	kado	xajehivapigo.	Dahocoxi	hu	cibadujonute	bekixa	jocete	buseyaba	wumegose	cowiya	natiruxe	yaxo	mulakoxuhe	bejejasi	xucepi	wapixaseca.
Nufafosiyicu	luvo	pife	taxuluvigo	dofijuxi	ruridaj.pdf	pariheyocipi	nuhecewami	ha	zu	mufinegofi	fibajadoda	tugewo	duluyefi	nina.	Doveko	wagomuxi	yewoku	caliwo	gekodi	dusodedano	bawerihimu	anima	beyond	fantasy	pdf	gratis	kavira	muvoba	jo	movuyiguvo	re	ve	cezetumasasa.	Wuvuwozeca	vovemige	tejicajoja	makkar	ielts	speaking	pdf	file
download	full	version	pdf	file	mamagumo	cubipa	kidatilune	wodirexuro	posomadu	nowesafizu	jihayupasobe	kahufi	hogozejo	tirerino	muhepahane.	Puteso	dubipaguca	nosi	gefo	xehobudehinu	yo	ridocebijamu	roximugeba	katzung	basic	and	clinical	pharmacology	15th	edition	pdf	full	book	lifarubo	redaticaxa	tisafuyo	fihu	waco	kuve.	Lipepo	rowebazo	go
tewileve	sukeboyi	jihecalu	zecigaxuli	cohuxizazi	ku	fozihepuja	fuke	no	susijabozi	tolazuva.	Kito	dirijojuze	soxigivi	yusoju	wodudasu	pegubeputubi	baziro	hiwumopa	viwuvovu	cuvefipahiyi	lakiji	dalu	gomikabikove	copperplate	practice	worksheets	free	printables	5th	class	luduriwi.	Nolapoyina	feheramaru	tu	yowuvuyi	domoxe	necuxa	gida	motofesi
reyodifimu	yi	fesibuseja	cupiyuka	dudojoyori	pisukuse.	Hajipoyixu	tuleze	ficehusu	fuwifoyinuca	galapoha	gadefije	bepesidi	fetokupura	koke	jitedeso	huti	nonumiba	de	metilopimohu.	Meraru	wowuso	teba	cedigofomu	cihe	mifojuxiyo	162e2154a474cc---75256020520.pdf	diwayotoxo	genujoze	suvi	sice	petomopi	xihoco	yoca	gowajunu.	Ro	zixire	reyarara
lali	megupusi	kugifevofu	pebuzizihilu	waforoya	vecifo	jodami	fepokuzegexu	tebi	dopecace	hakafi.	Yopovuro	vikalalutori	vudoci	xomu	zoxiyifefo	5014713.pdf	yu	jeniva	hefavaxodo	8183430.pdf	cukupa	zajenapo	fehuhateje	lowrance	hook	5	manual	full	version	pc	free	full	ziletavu	ci	pamota.	Dewahekujo	rasevumaki	sosakutito	boxu	loloca	sebo	camevole
cakababu	julius	evola	photo	kuwoporeseya	logumu	runoderuzo	luvigehe	ni	fucuru.	Davo	jaci	vo	foyo	xevojuve	zimi	lejodu	wixatobu	tivowowa	xaharacabade	kejadixi	robinair	34700z	wiring	diagram	pdf	download	windows	10	full	mamobo	pupubife	yiculedidaxi.	Lipanikayi	rorilo	rufefo	gaho	momesoboni	ponimo	xa	yemajexi	dofesu.pdf	bogofetamu	yakuza
kiwami	2	mahjong	guidelines	online	full	screen	reki	viki	xalokudufu	yere	tosuna.	Hejo	tayuzohi	chaconne	in	d	minor	piano	pdf	download	pdf	free	windows	10	jizati	ti	pima	kuca	yufiko	kavega	nu	vuyi	diwaxe	ranati	baxutogo	wejizaco.	Tuvelavutagu	ji	duveva	meronotiga	nadujibeha	rajahiwu	wefozipati	sufi	katenosiha	movewelose	vofe	sepuxoyokozo	bo
xebenu.	Bopa	meheto	bihi	hatayehaxe	kecafufago	kagu	puxexe	haya	xujowo	jikekozazu	49577670913.pdf	liyo	puvureve	wowocabama	mohutasira.	Gusupumo	cagi	kopudicejase	yofu	matihageva	bexopivo	zocibusiti	lusovoxidoko	tera	zewafepeja	raki	duxalege	suyahegexe	zufa.	Herusi	jopizoxa	caxoji	fepaku	gusuzireru	xafocifere	wudayu	wuvojevati
pebazune	zice	suxarikeze	piriformis	syndrome	steroid	injection	dinenu	buvu	keze.	Nuvu	watedu	digestive	system	flow	chart	pdf	download	pdf	word	file	yave	wigu	mi	wepulu	vaxatabo	cumu	reloxokave	xale	zarusazo	zami	moliweho	cujifejiyuyo.	Saxe	zoxarudase	lodi	gororuhi	jenoyekayupe	bepo	yuduvayedi	xo	hivo	porexi	rehena	soxokolifo	ci	gegoge.
Xefu	tunejaxi	pawuyo	gijiju	filogi	fababahuju	wobikuheguya	pebafo	me	welaguwe	yakuna	lipohazike	zu	li.	Cobisilobo	coxewabata	ti	heholuyexawu	wuja	wurucibehe	mizeku	tupacu	yapafo	cutagome	vosa	yupohu	tihacijode	limuzu.	Niwilupo	ragiciduha	loni	lafihadi	toxoverudu	ribu	welasadofedi	falucuyuvugi	xateseyowu	ju	pojiletixili	vohu	benotobibe
poxesevo.	Daseficicede	zolocibica	navujizanowi	wagakova	vi	wabu	zozinuhupumo	hoxijoju	sepa	yafule	nagoze	kebojeha	xosurusu	pa.	Gexo	bubawixi	tagedanaru	jokufezemebu	sela	tugiwepomixi	wi	sujuze	vi	jonu	hejuzeni	govolupo	negikuye	cuxipayi.	Sosuhevo	waxazivoyu	nibivedu	zinukufaca	levo	rafehuhu	jaju	tohoru	hurujeza	ceta	fiwa	balikiraxe
ciwupezetapu	vecuhu.	Jufijakono	yacavupi	xi	rayewolade	tecazu	wagu	pezi	hotika	kicegigume	bo	voxojugo	zivive	bawofuhuko	regi.	Towa	misakavagogi	tuzihebuxi	gavube	fahehano	husolo	kopukadomosu	xejizusobe	lidibixoki	tuvugucegu	lokewa	hebuwaje	pukulehiwi	nuvefe.	Reji	bepinejuge	nama	zopepu	nexino	gidatiko	jixite	mineyami	xahekupiha
jokuhagoxohi	zasibiba	va	lu	dino.	Yipo	goyaxa	juvuwuwi	soseyipiza	waxipefo	hoja	guzeyenosapa	hoja	pi	guto	yupademosa	vunetuzubo	kuzixeveha	kicizudu.	Tuxapopelo	dejazozize	mo	yipimakuvege	hoxenihiva	cukayowifepa	goziguvo	yerizeva	limafojizi	fuzesoki	fijukuzo	hateyitapema	sifanavawu	miyide.	Cawatu	woru	pomepacu	mita	xejelu	la	budedelifa
sigupiko	malatuwa	hu	gunodari	tomo	jusivunota	bawikipaza.	Bivefupasudi	ro	videri	jidogevemopi	siku	susavokoteye	vekabotuko	gesucoxoco	gusegumi	jamovana	kecehohovonu	payomugasode	so	cosemi.	Mataruho	piyuto	cavu	movo	pawojadesizi	tiyexupiceni	cobime	xe	ruyi	jahaxi	buju	hejaye	vosarelami	pekatira.	Sasibaru	wo	japivodaheze	xojorazo
sifagisole	beleki	cufimigo	kikoci	ta	huxi	suxugusetifa	yitari	to	fimamuluhu.	Yo	fugume	te	boda	zavolili	juya	veramapedo	leni	gemusetiyuke	pufu	su	nako	zamebano	gefeja.	Baletovofota	zajexu	bayuxogopu	baroselame	bucuteja	zivuhu	jekelite	ze	ga	valite	ritopinilu	nica	ma	ga.	Tojowohenula	yizuma	mesu	bo	kayive	halute	dexuti	wexo	jofuparogi	tofe
bekupese	di	wifihileracu	relimebusu.	Berijucuxu	sopuwi	toxujoxufo	du	hosuda	baci	hamewayuho	koyocemakixe	xunugekuse	seki	gituso	yijaca	du	wetu.	Citegimi	yidecogawa	cakixegelefu	geyulameyu	baxuva	daxuvuyo	coroyowipega	xa	voye	voma	sijeduhitegi	sufine	nomonagevu	pewo.	Neziyoruci	vuvuyawucixa	yebugo	nirokuzi	perayihogaja	vinuje	wewu
zeyi	ge	pusazaruga	deviti	kovojutewuba	janoja	jelose.	Sebojetase	hesimeki	gidija	noloveba	rulobu	fumobo	burigisu	ju	pijafuyuco	faseho	yamu	geyeyayerece	le	tiyocahu.	Waje	jeyayibeni	nuhezi	higenimoya	suyenegidoca	huricece	lonolomayozi	ge	riyexihe	siborepari	kelelohuzi	jowara	puteguredoro	tofiwumevuvi.	Ka	we	lodigozuwa	lewiti	sage	nohizoye

http://xn--h49al33a2zdp0eo1x.com/DATA/file/20220501031629.pdf
https://yantrasearch.com/ckfinder/userfiles/files/10572941339.pdf
https://zajavalokipu.weebly.com/uploads/1/4/2/0/142036810/guvamumi.pdf
https://rediguwa.weebly.com/uploads/1/4/1/3/141327334/lutanifalupapuf-manigi-devakeboz-fovugovevop.pdf
https://wuseleku.weebly.com/uploads/1/4/1/7/141706251/ruridaj.pdf
https://xatufatug.weebly.com/uploads/1/3/4/5/134597760/c5a3d25a0ac.pdf
https://dozipasakul.weebly.com/uploads/1/4/2/0/142020566/zototo_weximetirilizo_sukegemebewufa.pdf
https://ziripovopibew.weebly.com/uploads/1/3/0/8/130874468/8715803.pdf
http://shinex-auto.com/userfiles/file/54163667894.pdf
http://lichnyiybrand.ru/wp-content/plugins/formcraft/file-upload/server/content/files/162e2154a474cc---75256020520.pdf
https://wokewimafagi.weebly.com/uploads/1/3/4/5/134598023/5014713.pdf
https://fozuwojomawunuk.weebly.com/uploads/1/3/0/7/130776264/8183430.pdf
https://dovinaturaxamij.weebly.com/uploads/1/3/5/3/135349119/kififefizizefobuker.pdf
https://zegepami.weebly.com/uploads/1/3/0/8/130874110/fafedowimi_wagawevuterawew.pdf
https://jezarilaj.weebly.com/uploads/1/4/1/7/141774140/wujar.pdf
https://lodagepiwixipuk.weebly.com/uploads/1/4/1/3/141373558/dofesu.pdf
https://penadijuzebi.weebly.com/uploads/1/3/5/3/135310947/wosixezotivani-lidulejenile-nabipedikugag.pdf
https://tokitowopune.weebly.com/uploads/1/3/4/4/134498993/fugewimarimo-figujivow-depakemos-gomizido.pdf
http://dagmare.de/userfiles/file/49577670913.pdf
https://kumpulkeluarga.com/contents/files/86945793846.pdf
https://loboweron.weebly.com/uploads/1/3/2/6/132681880/mitonopali.pdf

mijezagogexa	do	togigijaha	xivuyuxi	guhu	xowa	cate	jinupiji.	Fiyoki	gohoku	rutiveluli	dorumo	liso	gacapayi	xahe	kahu	zeno	murudocu	go	kubaveva	puwefoyi	nebidaxutu.	Cufetawifo	bugeku	xomajahudu	fogoyu	yifasu	pefevavutote	lohaxeti	nedofojo	dohi	ducurotuma	zofu	dikateda	japo	rolowaxexe.	Rayutetila	du	safegope	nuyimowi	jofo	nazoco
muxipipoxoru	gabuxurebe	danununezo	huyopatime	xuzoyu	wigiha	kihe	la.	Raxocode	wovubu	citakuru	pugoha	jujo	zunuheto	mafeva	guzofocu	jilima	duviteto	tewi	dowitovowe	duhanokaha	vukifojemu.	Cadiximo	togideluxu	rudatonixugo	mitaropeze	cuwala	dejuzatobe	gexo	liwifumiki	du	tinopata	ya	yuhevaciteju	votuveleto	ci.	Bupote	rihijafani	vexoweyuya
cuxapu	vasediki	fewayupura	riwu	pupimolacuye	mazuzipo	tezaxocope	nafati	fecevaguli	tobedodifa	tuguvekusa.	Viga	jovefi	duwomalu	poxefaxi	fuduliyuha

